2017 Total Solar Eclipse

Map of US Eclipses from 2017-2052

On 21 August 2017, a total solar eclipse caused the shadow of the moon to traverse the United States from Oregon to South Carolina in just over 90 minutes. Although the ionospheric effects of solar eclipses have been studied for over 50 years, many unanswered questions remain. HamSCI invited amateur radio operators to participate in a large-scale experiment which characterized the ionospheric response to the total solar eclipse and targeted open science questions.

Hundreds of ham radio operators helped out by getting on the air with the Solar Eclipse QSO Party, a contest-like operating event designed to generate data for studying the eclipse. Other HamSCI experiments included making HF Frequency Measurements, recording HF spectra, setting up a Reverse Beacon Network Receiver, participating in VLF/LF receiving experiments, and listening to AM broadcast stations. See our Eclipse Get Involved for more information.

Are you curious about how prior total solar eclipses affected the ionosphere? Read about radio experiments during the 1999 United Kingdom Total Solar Eclipse coordinated by the Rutherford Appleton Laboratory.

 

 

SEQP

Get on the air with the Solar Eclipse QSO Party!

Get Involved!

How can hams and the general public get involved?

The Experiment

Details of the plan to study the 2017 solar eclipse.

 

Join the HamSCI-Eclipse Mailing List

 

By Jonathan Rizzo, KC3EEY

SAQ (callsign SAQ) is a VLF transmitting station located in Grimeton, Sweden and is a UNESCO World Heritage Site operated by the Alexanderson Association. The heart of the transmitter is the Alexanderson Alternator and six antenna towers that are iconic to the site. Twice a year, there is a CW transmission at 17.2 kHz with an inspirational message to listeners all over the world. On Alexanderson Day, July 2nd, 2023, SAQ is scheduled to be on the air. More details can be found here (https://alexander.n.se/en/alexanderson-day-2023/) and contains a tentative schedule and a YouTube live broadcast for those who would like to watch the event live.

Dr. Kristina Collins, KD8OXT, is the lead author on a new paper published in the peer-reviewed journal Earth System Science Data entitled Crowdsourced Doppler measurements of time standard stations demonstrating ionospheric variability. The Grape Personal Space Weather Station is a low-cost, high frequency (HF) receiver designed to make precision measurements of signals received from frequency standards stations such as WWV, WWVH, and CHU. Because these standards stations transmit carriers with atomic-clock grade frequency stability, and the Grape receiver achieves similar frequency stability through the use of a GNSS Disciplined Oscillator, variations in the received signal can be attributed to changes in the ionosphere. The new paper demonstrates this in multiple ways, including showing changes in Doppler frequency due to the dawn and dusk terminators, seasonal variations, wave signatures with Medium Scale Traveling Ionospheric Disturbance periods, and the ionospheric response to solar flares. The paper also explains how to access Grape data and the open-source software used to conduct the analysis. The co-author team consists of professionals, students, and HamSCI volunteers, including Kristina Collins KD8OXT, John Gibbons N8OBJ, Nathaniel Frissell W2NAF, Aidan Montare KB3UMD, David Kazdan AD8Y, Darren Kalmbach KC0ZIE, David Swartz W0DAS, Robert Benedict KD8CGH, Veronica Romanek KD2UHN, Rachel Boedicker AC8XY, William Liles NQ6Z, William Engelke AB4EJ, David G. McGaw N1HAC, James Farmer K4BSE, Gary Mikitin AF8A, Joseph Hobart W7LUX, George Kavanagh KB1HFT, and Shibaji Chakraborty KN4BMT. The Grape receivers are the focus of an NSF-funded experiment to study the upcoming 2023 annular and 2024 total solar eclipses. More information on building your own Grape receiver is available at hamsci.org/grape.

A key component of the HamSCI mission is to encourage amateurs to conduct and share their own research and experiments. Larry Serra N6NC recently published two articles in QEX Magazine from his trans-North Pacific 40m propagation projects: The first, "Why Summer 40m Propagation Is So Good Between Japan and the US Pacific Coast" (QEX SEPT/OCT 2022 p.14), examined 12 years of July JA-US 40m propagation conditions and CW Skimmer results on days of JA domestic CW contests and proposed that the relatively calm water under the almost wall-to-wall summertime North Pacific HIGH pressure centers provided nearly +12dBm enhanced low-angle signal strength due to a reduction of surface reflection absorptions in the 3-ionospheric refraction, 2-sea surface reflection propagation path.