Viability of nowcasting solar flare-driven radioblackouts using SuperDARN HF radars

<u>Shibaji Chakraborty</u>^{KN4BMT}, J. Michael Ruohoniemi, and Joseph Baker

Center For Space Science and Engineering Research Virginia Tech, Blacksburg, USA

HamSci 2021

The Sun – the heart of our solar system

- The Sun emits electromagnetic radiations in X–ray and EUV spectrum.
- Often Sun shoots out the sudden localized intensification of EM radiation, commonly known as *solar flare*.
- In this study we are going to focus on the *solar flare* impact on the Earth's ionosphere.

Outline

1. Introduction

- > The Sun and Ionosphere
- Impact of Solar Flares in the traveling Radio Wave
- Instrument: SuperDARN

2. Solar Flare Effects on SuperDARN Observations

- Event Study: 5th May 2015
- Timing Analysis and Phase Identification
- 3. Using SuperDARN as a Solar Flare Monitor

4. Summary

Earth's Atmosphere – Ionosphere

- o <u>Ionosphere</u>: Ionized part of the upper atmosphere, are consists of different layers (D, E, and F).
- o Ionosphere plays an important role in radio wave propagation, that is directly related to *Amateur Radio*.
- Ionosphere is highly variable and is dependent on solar activities [*Knipp et al., 2016; Frissell et al., 2014*].
- In this study we primarily focus on impact of <u>solar flares</u> in the ionosphere.

Effects of Flare: SID, SWF, and SFD

• <u>Sudden Ionospheric Disturbance (SID)</u>: sudden enhancement of *plasma density* in the *dayside* D and lower E-regions of the ionosphere (*Davies, 1990*).

- <u>Shortwave Fadeout (SWF)</u>: sudden increase in *radio-wave absorption* in high frequency (HF) ranges (3-30 MHz) (*Davies*, 1990).
- Enhanced EM radiation Sun \rightarrow Source of EM radiation and Flare M M M Rx Earth D-Layer E-LayerF-Layer

• <u>Sudden Frequency Deviation (SFD)</u>: sudden change in *radio-wave frequency* that alters the phase path length of the traveling wave (*Davies, 1990*).

Why do We Study Solar Flare Effects?

- <u>Space Weather</u>: Mitigate the impact of SWF and SFD on *amateur radio*, HF communication, used in aviation, emergency management, defense, etc [*Frissell et al., 2019; Redmon et al.,* 2018].
- <u>Space Science</u>: Improve our understanding of fundamental ionospheric processes, such as:
 - 1. HF absorption SWF
 - 2. Frequency Anomaly SFD

 Solar Flare induced SIDs and its impacts on traveling radio waves are the fastest Space Weather phenomena seen on Earth, as solar flare takes only ~8 min to reach Earth.

Instruments: SuperDARN HF Radar

Radar Scan

-50

150

- <u>SuperDARN:</u> An international HF radar network that probes the Earth's upper atmosphere and ionosphere.
- HF propagation depends on refraction due to ionospheric electron density gradients.
- There are two primary backscatter targets:
 - 1. <u>Ionospheric scatter</u>: Backscatter from ionospheric irregularity structures.
 - 2. <u>Ground Scatter:</u> Backscatter from ⁄ the Earth's surface.
- Ground scatter replicates a ground-to-ground communication link just like an *amateur radio l*ink does.
- Here, ground scatter data is used to study the ionospheric response to solar flares.

2. Solar Flare Effects

Flare impact on Radar (Event Study: 5th May 2015)

Radar station – Blackstone

2. Solar Flare Effects

Flare impact on Radar (Event Study: 5th May 2015)

Timing Analysis

Radio Blackout Start - Start of the HF absorption 30 fo=14.81 MHz x=68.75° 25 #-GS Echo [C] **Recovery Onset -** Start of recovery

Radar station – Blackstone

Onset - Onset of the HF absorption

Recovery - GS recovered

Timing Analysis: Phases

Radar station – Blackstone

Radio Blackout – Peak of signal loss

Onset – Precursor of absorption

Gradual Recovery – Signal strength restore back to preflare condition

2. Solar Flare Effects

Timing Analysis: Solar Zenith Angle (SZA)

Backscatter signals of the radars located near to subsolar point are affected more severely than radars located at larger solar zenith angles.

Timing Analysis: Signal Frequency

 Backscatter signals of the radars operating at relatively lower frequencies are affected more severely than radars operating at higher frequencies.

SuperDARN HF Radars distributed across North American Land Mass

SuperDARN Space Weather Monitoring System

 2017-09-04
 2017-09-05
 2017-09-06
 2017-09-07
 2017-09-08
 2017-09-09
 2017-09-10

3. Solar Flare Monitor

SuperDARN HF Radars distributed across North American Land Mass

SuperDARN Space Weather Monitoring System

Summary

- Daytime SuperDARN ground-scatter replicates ground-to-ground communication link (just like the *amateur radio*) which is susceptible to solar flares.
- > Clearly, we can see a progression of different phase timings along longitude and Solar Zenith Angle.
 - Impacts are mitigated as we move away from the solar noon position. It can also be interpreted as local time effect.
- Timings are also constrained by the transmitted frequency of the radar. Radars with low operating frequency affected much more by the event.
- A subnetwork of SuperDARN HF Radars can be used to monitor solar flare driven HF absorption across North American Sector.

Questions?

<u>shibaji7@vt.edu</u>

Supplementary Materials of this Presentation

- Chakraborty, S., Ruohoniemi, J. M., Baker, J. B. H., & Nishitani, N. (2018). Characterization of short-wave fadeout seen in daytime SuperDARN ground scatter observations. *Radio Science*, 53, 472–484. <u>https://doi.org/10.1002/2017RS006488</u>
- Fiori, R. A. D., Koustov, A. V., Chakraborty, S., Ruohoniemi, J. M., Danskin, D. W., Boteler, D. H., & Shepherd, S. G. (2018). Examining the Potential of the Super Dual Auroral Radar Network for Monitoring the Space Weather Impact of Solar X-Ray Flares. *Space Weather*, 16, 1348–1362. <u>https://doi.org/10.1029/2018SW001905</u>