

Statistical Perspectives On The Human Factor from RBN and WSPR Networks

> David Campbell Dr. Deborah Kunkel



## The Data

#### Data from RBN and WSPR networks

Includes "Spots"

• Spots include Time, Date, Callsign Receiving and Broadcasting, Locations, Frequency, Band

• This is the raw data we got for F5IN callsign:

|   | v | calleign  | donfy   | do cont   | frog     | hand | dy   | dy nfy | dy cont | modo | dh  |            | data     | chood |
|---|---|-----------|---------|-----------|----------|------|------|--------|---------|------|-----|------------|----------|-------|
|   | ^ | carisiyii | ue_prx  | ue_conc   | neq      | Danu | ux   | ux_pix | ux_conc | moue | ub  |            | uale     | speed |
| 1 | 1 | DF7GB     | DL      | EU        | 3511.0   | 80m  | F5IN | FALSE  | EU      | CQ   | 11  | 2016-01-01 | 06:22:12 | 21    |
| 2 | 2 | SV8RV     | SV      | EU        | 7004.1   | 40m  | F5IN | FALSE  | EU      | CQ   | 15  | 2016-01-01 | 06:39:01 | 24    |
| 3 | 3 | K3LR      | K       | <na></na> | 7004.0   | 40m  | F5IN | FALSE  | EU      | CQ   | 22  | 2016-01-01 | 06:39:03 | 23    |
| 4 | 4 | W1NT      | K       | <na></na> | 7004.1   | 40m  | F5IN | FALSE  | EU      | CQ   | 15  | 2016-01-01 | 06:39:04 | 24    |
| 5 | 5 | HA2KSD    | HA      | EU        | 7004.0   | 40m  | F5IN | FALSE  | EU      | CQ   | 35  | 2016-01-01 | 06:39:07 | 24    |
| 6 | 6 | N2QT      | K       | <na></na> | 7004.0   | 40m  | F5IN | FALSE  | EU      | CQ   | - 7 | 2016-01-01 | 06:39:07 | 23    |
|   | t | _mode mdł | nead_ca | llsign mo | dhead_d> | ¢    |      |        |         |      |     |            |          |       |
| 1 |   | CW        |         | JN49CX    | JN18D    | )    |      |        |         |      |     |            |          |       |
| 2 |   | CW        | I       | KM07KS    | JN18D    | )    |      |        |         |      |     |            |          |       |
| 3 |   | CW        | l       | EN91SE    | JN18D    | )    |      |        |         |      |     |            |          |       |
| 4 |   | CW        | F       | FN32PC    | JN18D    | )    |      |        |         |      |     |            |          |       |
| 5 |   | CW        |         | JN87WB    | JN18D    | )    |      |        |         |      |     |            |          |       |
| 6 |   | CW        | I       | FM07II    | JN18D    | )    |      |        |         |      |     |            |          |       |



#### The Data

#### • Cleaning the Data

• Focused on the data for our model and rescaled all the variables

|   | reporter  | repor | ter.grid   | callsign  | trans.grid   | distance  |             | utc        | utc.num  | reporter.lat      |
|---|-----------|-------|------------|-----------|--------------|-----------|-------------|------------|----------|-------------------|
| 1 | VE6JY     |       | DO33or     | 05JVD     | BM 3 9       | 3398      | 2021-02-09  | 03:24:00   | 204      | 53.02083          |
| 2 | VE6JY     |       | DO33or     | 2E0DLC    | IO93hm       | 6525      | 2021-02-09  | 10:38:00   | 638      | 53.02083          |
| 3 | VE6JY     |       | DO33or     | 2E0DLC    | IO93hm       | 6525      | 2021-02-09  | 10:20:00   | 620      | 53.02083          |
| 4 | VE6JY     |       | DO33or     | 2E0DLC    | IO93hm       | 6525      | 2021-02-09  | 10:02:00   | 602      | 53.02083          |
| 5 | VE6JY     |       | DO33or     | 2E0DSS    | I082x1       | 6585      | 2021-02-09  | 16:16:00   | 976      | 53.02083          |
| 6 | VE6JY     |       | DO33or     | 2E0DSS    | I082x1       | 6585      | 2021-02-09  | 15:40:00   | 940      | 53.02083          |
|   | reporter. | long  | dat        | e no_from | n_callsign_c | late tota | 1.location  | total.date | total.   | late.and.location |
| 1 | -113.     | 9583  | 2017-12-2  | 8         |              | 1         | 1           | 1089424    |          | 1                 |
| 2 | -113.     | 9583  | 2017-12-1  | 3         |              | 2         | 15067       | 874296     |          | 731               |
| 3 | -113.     | 9583  | 2017-12-2  | 4         |              | 5         | 15067       | 1222007    |          | 323               |
| 4 | -113.     | 9583  | 2017-12-2  | 6         |              | 4         | 15067       | 1173931    |          | 1137              |
| 5 | -113.     | 9583  | 2017-12-0  | 1         |              | 2         | 25031       | 1042469    |          | 682               |
| 6 | -113.     | 9583  | 2017-12-0  | 8         |              | 1         | 25031       | 946949     |          | 462               |
|   | rescaled. | tota  | l.date res | caled.tot | tal.locatior | n rescale | d.total.dat | e.and.loca | tion res | caled.distance    |
| 1 |           | 0.57  | 791597     |           | -0.59511266  | 5         |             | -0.6944    | 6027     | -0.07921069       |
| 2 |           | -1.22 | 296018     |           | -0.27460412  | 2         |             | -0.2888    | 7144     | 1.01116853        |
| 3 |           | 1.69  | 938962     |           | -0.27460412  | 2         |             | -0.5155    | 5671     | 1.01116853        |
| 4 |           | 1.28  | 396809     |           | -0.27460412  | 2         |             | -0.0632    | 9738     | 1.01116853        |
| 5 |           | 0.18  | 343696     |           | -0.06263366  | 5         |             | -0.3160    | 9590     | 1.03209042        |
| 6 |           | -0.61 | L87471     |           | -0.06263366  | 5         |             | -0.4383    | 2815     | 1.03209042        |



# Spot Watcher

• We have created an app to help with visualizations of the use of certain spots

- <u>https://Deborah-kunkel.shinyapps.io/SpotWatcher/</u>
- This app focuses on Callsign F5IN: maidenhead coordinate JN18dd (Dadonville, France)





# **Statistical Model**

- Motivation
  - Spikes in the counts of spots
  - Goal: estimate a function that predicts the number of spots heard from a fixed location on a particular date.
- Poisson Generalized Linear Model (GLM)
  - Why this model?
    - Counts had a similar distribution to the Poisson Distribution
  - Response Variable: Count of spots to a callsign on a date
  - Predictor Variables:
    - Count of spots on a date
    - Count of spots from each location
    - Count of spots from each location on a date
    - Distance to callsign

• Used a spline for this variable to use a flexible function to model the effect of distance



## **Statistical Model**

- Final Model:  $\log(\lambda(t,s)) = \beta_1 X_{1,t} + \beta_2 X_{2,s} + \beta_3 X_{3,t,s} + \beta_4 X_{3,t,s}^2 + \beta_5 g(d(s))$
- $\lambda(t,s)$ : Function of counts of spots that a callsign receives given date, t, and location, s.
- $X_{1,t}$ : Number of spots from date, t
- $X_{2,s}$ : Number of spots from location, s
- $X_{3,t,s}$ : Number of spots from date, t, and location, s
- g(d(s)): Smooth function of distance from receiver to transmitter
- To create this model, we used data from the WSPR network for December 2017





• Final Model:  $\log(\lambda(t,s)) = \beta_1 X_{1,t} + \beta_2 X_{2,s} + \beta_3 X_{3,t,s} + \beta_4 X_{3,t,s}^2 + \beta_5 g(d(s))$ • Using Data for Callsign DK8FT (maidenhead JN580e in

Fürstenfeldbruck, Germany):

|                                                 | Estimate  | Std. Error | z value  | Pr(> z )    |
|-------------------------------------------------|-----------|------------|----------|-------------|
| (Intercept)                                     | 5.262404  | 0.009477   | 555.312  | < 2e-16 *** |
| poisson.data.rescaled.total.date                | 0.062412  | 0.001163   | 53.657   | < 2e-16 *** |
| poisson.data.rescaled.total.location            | -0.019191 | 0.001332   | -14.411  | < 2e-16 *** |
| poisson.data.rescaled.total.date.and.location.2 | -0.116739 | 0.000364   | -320.726 | < 2e-16 *** |
| poisson.data.rescaled.total.date.and.location   | 1.041081  | 0.001885   | 552.233  | < 2e-16 *** |
| X1                                              | -2.659388 | 0.026629   | -99.867  | < 2e-16 *** |
| X2                                              | -2.226499 | 0.017113   | -130.107 | < 2e-16 *** |
| X3                                              | -1.971727 | 0.015888   | -124.102 | < 2e-16 *** |
| X4                                              | -1.677650 | 0.011921   | -140.725 | < 2e-16 *** |
| X5                                              | -1.077331 | 0.013184   | -81.713  | < 2e-16 *** |
| X6                                              | -1.465921 | 0.013806   | -106.182 | < 2e-16 *** |
| X7                                              | -1.355001 | 0.012026   | -112.672 | < 2e-16 *** |
| X8                                              | -1.072345 | 0.011784   | -91.000  | < 2e-16 *** |
| X9                                              | -1.306203 | 0.011370   | -114.884 | < 2e-16 *** |
| X10                                             | -1.496752 | 0.011509   | -130.055 | < 2e-16 *** |
| X11                                             | -1.356888 | 0.011641   | -116.560 | < 2e-16 *** |
| X12                                             | -1.179067 | 0.024574   | -47.979  | < 2e-16 *** |
| X13                                             | -5.907961 | 0.054968   | -107.479 | < 2e-16 *** |
| X14                                             | -0.394943 | 0.127750   | -3.092   | 0.00199 **  |
| X15                                             | -6.719685 | 0.185455   | -36.233  | < 2e-16 *** |



• Final Model:  $\log(\lambda(t,s)) = \beta_1 X_{1,t} + \beta_2 X_{2,s} + \beta_3 X_{3,t,s} + \beta_4 X_{3,t,s}^2 + \beta_5 g(d(s))$ 





• Final Model:  $\log(\lambda(t,s)) = \beta_1 X_{1,t} + \beta_2 X_{2,s} + \beta_3 X_{3,t,s} + \beta_4 X_{3,t,s}^2 + \beta_5 g(d(s))$ 

• Using data for callsign VE6JY (maidenhead DO33or in Lamont, Alberta, Canada):

|                                                 | Estimate  | Std. Error | z value | Pr(> z )   |
|-------------------------------------------------|-----------|------------|---------|------------|
| (Intercept)                                     | 4.675945  | 0.020551   | 227.53  | <2e-16 *** |
| poisson.data.rescaled.total.date                | 0.093745  | 0.001526   | 61.44   | <2e-16 *** |
| poisson.data.rescaled.total.location            | 0.082056  | 0.002013   | 40.77   | <2e-16 *** |
| poisson.data.rescaled.total.date.and.location.2 | -0.120541 | 0.000483   | -249.57 | <2e-16 *** |
| poisson.data.rescaled.total.date.and.location   | 0.991939  | 0.002549   | 389.12  | <2e-16 *** |
| X1                                              | -2.218985 | 0.046390   | -47.83  | <2e-16 *** |
| X2                                              | 0.397394  | 0.027302   | 14.55   | <2e-16 *** |
| X3                                              | -0.833218 | 0.024946   | -33.40  | <2e-16 *** |
| X4                                              | -0.307937 | 0.021654   | -14.22  | <2e-16 *** |
| X5                                              | -0.833561 | 0.023143   | -36.02  | <2e-16 *** |
| X6                                              | -0.961769 | 0.022772   | -42.23  | <2e-16 *** |
| X7                                              | -1.268362 | 0.023414   | -54.17  | <2e-16 *** |
| X8                                              | -0.804226 | 0.023657   | -34.00  | <2e-16 *** |
| X9                                              | -1.243891 | 0.022631   | -54.96  | <2e-16 *** |
| X10                                             | -1.951656 | 0.022676   | -86.07  | <2e-16 *** |
| X11                                             | 0.408486  | 0.033222   | 12.30   | <2e-16 *** |
| X12                                             | -3.184312 | 0.034787   | -91.54  | <2e-16 *** |
| X13                                             | -3.893966 | 0.085242   | -45.68  | <2e-16 *** |
| X14                                             | 2.296857  | 0.116300   | 19.75   | <2e-16 *** |
| X15                                             | -6.147652 | 0.142411   | -43.17  | <2e-16 *** |



• Final Model:  $\log(\lambda(t,s)) = \beta_1 X_{1,t} + \beta_2 X_{2,s} + \beta_3 X_{3,t,s} + \beta_4 X_{3,t,s}^2 + \beta_5 g(d(s))$ 





• Final Model:  $\log(\lambda(t,s)) = \beta_1 X_{1,t} + \beta_2 X_{2,s} + \beta_3 X_{3,t,s} + \beta_4 X_{3,t,s}^2 + \beta_5 g(d(s))$ 





## **Conclusion and Future Work**

- Additions to our statistical model
  - Expansion (frequencies, time, etc.)
  - Predictive checks
  - Bayesian methods
- Big data workflow
- Statistician + scientist teams
  - David Campbell: <u>dtcampb@clemson.edu</u>
  - Deborah Kunkel: <u>dekunke@clemson.edu</u>



## References

- Data sources:
  - Reverse Beacon Network. http://www.reversebeacon.net/index.php
  - Weak Signal Propagation Reporter Network. <u>http://wsprnet.org/drupal/downloads</u>
- Maidenhead coordinates lookup:
  - HA8TKS. <u>https://dxcluster.ha8tks.hu/hamgeocoding/</u>
- Map images:
  - Google Maps and affiliates. See image attributions.