Traveling Ionospheric Disturbances Tracked through Doppler-Shifted AM Radio Transmissions

Presented by: Claire Trop

Project Members: Jim LaBelle, Phil Erickson, Shunrong Zhang, David McGaw, Terry Kovacs

DARTMOUTH

MIT HAYSTACK OBSERVATORY

Traveling lonospheric Disturbances (TIDs)

TID Modeled in the lonosphere

What are they?

- Buoyancy waves driven by geomagnetic activity
- Convey and redistribute energy through the atmosphere

Why do they matter?

- Critical for understanding energy transfers in Earth's atmosphere
- Large disturbances can interfere with technology that relies on propagation through the atmosphere such as GPS

Motivation: Chilcote et al. 2015

Haystack Digisonde _|(c) 400 3.8 4.1 4.4 4.7 2.9 360 Height [km] 320 280 240 200 1 hr 160 Dartmouth, 1030 kHz 0.75 0.5 requency [Hz] 0.25 0.0 -0.25 -0.5 -0.75 07:05 00:00 02:05 03.00

Data Summary from Chilcote et al. 2015

Chilcote et al. 2015:

- Successfully identified a TID using Doppler– shifted signals
- Found a discrepancy between their phase velocity and GPS VTEC maps

Current Study:

- We have a larger network, advanced analysis, and more events
- Seek to **confirm the capabilities** of this technique and **identify further applications**
- Seek to understand discrepancies between GPS VTEC and this method

Map of Receiver Network:

Instrumentation:

Receiver Antenna

Inside of AM Receiver

Methodology: 2020-07-13 to 2020-07-14

TID Characteristics Analysis: Step 1

Dark red indicates **strength of correlation** (similarity of the signals)

Procedure:

- Sliding normalized
 cross correlation
 with respect to the
 Hanover, NH (2)
 baseline signal
- Shared region of stationary lag identified

TID Characteristic Analysis: Steps 2 & 3

- Geographic Distribution of lag over stationary region
- AMD2 as reference for all cross-correlations (XCF)
- Positive (red/orange) values precede negative (blue) values

Average over Triad

Auroral Source Locating

Magnetometer Activity Location and Strength Map

Auroral Electrojet (AE) Index for 2020-07-14

- Distance from source to receivers is 2000km
- Phase velocity of wave 300 m/s
- Phase velocity and distance agree with initiation timing

Summary of Event Data: Collection Ongoing

Event Date	810 Hz Triad Phase Velocity	Potential Cause	GPS Phase Velocity
03/23/2020	559 SW	Auroral	485 S and W
05/06/2020	340 SE	Auroral	320 S and 190 E
07/14/2020	305 SE	Auroral	645 S and 165 E
09/09/2020	230 N	Unknown	170 N
09/22/2020	384 SE	Unknown	
09/26/2020	406 S	Auroral	Two wavefronts: (1) 430 S and large zonal (2) 80W
09/27/2020	300 SE	Auroral	
09/29/2020	859 SW	Auroral	580 S
11/15/2020	463 WNW	Unknown	130 N
12/10/2020	529 S	Unknown	80 S and 60 W
12/29/2020	171 W	Unknown	215 S and 60 W
12/30/2020	235 NW	Unknown	145 N and 80 W
1/26/2021	289 SE	Auroral	130 W

Summary of Event Data: Collection Ongoing

Event Date	810 Hz Triad Phase Velocity	Potential Cause	GPS Phase Velocity
03/23/2020	559 SW	Auroral	485 S and W?
05/06/2020	340 SE	Auroral	320 S and 190 E
07/14/2020	305 SE	Auroral	645 S and 165 E
09/09/2020	230 N	Unknown	170 N
09/22/2020	384 SE	Unknown	
09/26/2020	406 S	Auroral	Two wavefronts: (1) 430 S and large zonal (2) 80W
09/27/2020	300 SE	Auroral	
09/29/2020	859 SW	Auroral	580 S
11/15/2020	463 WNW	Unknown	130 N
12/10/2020	529 S	Unknown	80 S and 60 W
12/29/2020	171 W	Unknown	215 S and 60 W
12/30/2020	235 NW	Unknown	145 N and 80 W
1/26/2021	289 SE	Auroral	320 S and 130 W

Technique Highlights: GNSS TEC

Velocity (S) and phase velocity (430 m/s) corroborate our 406 m/s (S).

Terminator Features (1560 kHz)

January Dawn Terminator

Year-Long Activity RMS Spectrogram

Terminator seasonal dependence indicative of **photochemical** SOURCE (Mathew et al. 2017; Kouba and Knizova 2017)

AM Sounding Frequency Comparison

810 kHz

1080 kHz

1560 kHz

Higher Frequency Transmission:

- Higher Amplitude Doppler Shifts
- Larger Number of **Periods**
- More **Frequent Events** Identified

Conclusions:

1. We have succeeded in identifying TIDs using Doppler-shifted AM radio transmissions

2. In most of these cases, we find that the <u>direction of propagation agrees with other</u> <u>established TID tracking methods</u>

3. We can identify <u>auroral sources</u> for TIDs in some cases

4. <u>Seasonal dependence of terminator features</u> at dawn and dusk characterizes them as products of photochemistry effects

5. <u>Higher sounding frequencies</u> (top half of the AM band) create <u>clearer Doppler shifts</u> for analysis

Thank you to to Michael Chilcote for sharing resources from his original study.