

TangerineSDR Clock Module Status Report

John Ackermann N8UR jra@febo.com http://www.febo.com

© 2021 John Ackermann

March 2021

Clock Module Overview

- GPS Disciplined Oscillator providing an <u>accurate</u> and <u>stable</u> source of:
 - 122.88 MHz for receiver ADC and transmitter DAC
 - 1 PPS for timestamping
 - TOD message
 - Multiple synthesized outputs from 100 Hz to 1024 MHz
- Usable separately from TangerineSDR via interface board for the time-nuts (tentative name: SynthDO)

Refresher: What's a GPSDO?

- GPS noisy at short term but tracks USNO/NIST in the long run
- XO stable in the short term, but drifts
- Best of both worlds: use PLL to steer XO with GPS
- Loop bandwidth tuned to ADEV "crossover" point

Clock Module Hardware Block Diagram – Mark I

Redesign!

- Extensive tests on modern GPS receivers revealed a simpler way
- Ublox "TIMEPULSE" need not be PPS; can be >10 MHz
 - ADEV is remarkably good (better than PPS)
 - Phase noise sucks
- "Jitter Attenuator" chips (e.g., SiLabs 5345) are neat:
 - Can clean up PN of dirty input
 - Include narrow bandwidth PLL
 - External oscillator sets short term and holdover performance
 - Multiple outputs at 100 kHz to 1028 MHz

Enter CKM Mk II

- uBlox GPS 10 MHz TIMEPULSE is input signal to Si5345
 - '5345 PLL acts like the back half of a GPSDO
 - Output is locked to nominal 10 MHz input
 - Actually, input can be any freq the GPS module can generate, so if needed we can move to avoid interference
 - Phase noise is cleaned up
- Si5345 has 10 (!) independent outputs and can directly provide all TangerineSDR clocks plus other uses

Clock Module Hardware Block Diagram – Mark II

uBlox GPS Receiver 10 MHz Performance

Ublox 10 MHz SiLabs Evaluation Boards

Allan Deviation $\sigma_{V}(\tau)$

Tradeoffs

• Pros:

- Much simpler design
- No FPGA programming required
- Lower cost makes using better GPS less painful
- Huge frequency agility
- Cons:
 - XO frequency used limits oscillator choices
 - Loop bandwidth won't optimize very high quality XOs
 - PPS holdover/sync more complicated

More About Holdover

- Output accuracy when GPS lock is lost
 - Usually specified by XX XS of time error after XX hours
 - Primarily a timing concern (big deal for telcos)
- Traditional GPSDO generates PPS from the XO to drive phase detector
 - XO_PPS is sync'd to GPS_PPS via PLL
 - XO_PPS is the unit output PPS
 - Has less jitter than GPS_PPS
 - If lock is lost, PPS output continues
 - Smoothly and without phase change, subject to XO drift
 - That's holdover mode

More About Holdover

- CKM Mark II doesn't generate XO-based PPS
- ZED-F9T and NEO-M8T have two TIMEPULSE outputs
 - One set to nominally 10 MHz to drive synth chip
 - Other TIMEPULSE provides PPS
 - ZED-F9T: +/- 4 ns jitter; NEO-M8T: +/- 11 ns
 - NEO-M9N has only one TIMEPULSE used for RF, so no PPS
- We configure TIMEPULSE outputs to stop on LoL
 - Si5345 goes into holdover; outputs remain locked to TCXO
 - But what about PPS?

More About Holdover

- Implement a counter to generate "XO_PPS" from one of the synthesizer RF outputs
 - Where? On CKM module? On Data Engine?
- Sync of XO_PPS to GPS_PPS will result in a minimum of one counter clock cycle delay
 - 10 MHz = 100 ns, 100 MHz = 10 ns, etc.
 - How high a clock is practical?
- Need to resync after holdover
 - How quickly do we slew XO_PPS to match GPS_PPS?
 - This isn't an issue at startup, when we can jam-sync
 - Need user input on how best to handle

March 2021 Status

- Proof-of-Concept requires finishing some test fixtures
 - Testing with 5328 and 534x evaluation boards gives high confidence of ultimate performance, but need to mate TCXO with 534x to see everything working together
- John's schematic completed and turned over to Scotty to put into production CAD tools
- Board layout will begin shortly
- "time-nuts" carrier board not started yet