

TangerineSDR

A Modular Open Source Software Defined Radio

for

HamSCI, Satellite, Experimenters and Academics

Scotty Cowling, WA2DFI

HamSCI Workshop March 19, 2021

© 2021 Scotty Cowling WA2DFI

What is the TangerineSDR Project...?

The TangerineSDR Project is a modular, open source hardware and software platform for development of all components of a Software Defined Radio.

It is also a group of volunteers led by TAPR, dedicated to the building of a pool of open-source Software Defined Radio design information.

Kind of like openHPSDR. Kind of like ORI. Kind of like HamSCI. But *different*.

TangerineSDR

We gratefully acknowledge support of this project from NSF Grants AGS-2002278, AGS-1932997, and AGS-1932972.

TAPR would also like to acknowledge the generous ARDC grant in support of the prototype build.

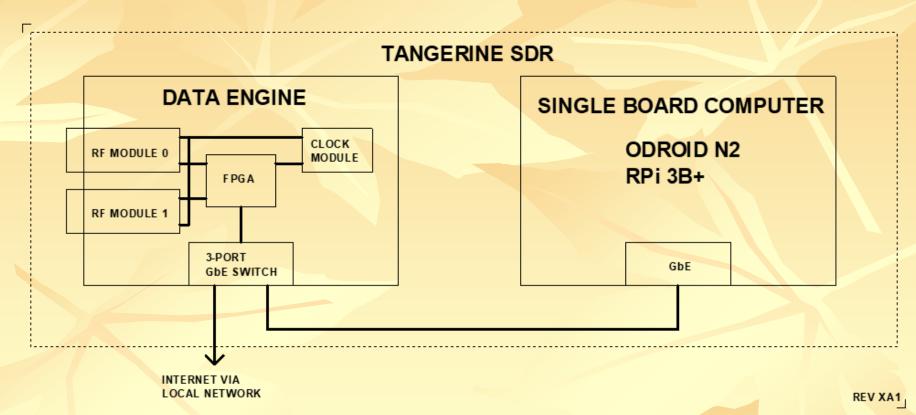
What is a TangerineSDR radio?

A TangerineSDR radio has the following features:

- Wide-range cost-based performance
 - From \$300 to \$1000+
- Based upon an open source model (OHL/NCL hardware, GPL software)
- Extremely modular, configurable and expandable
- Advances the State of the Radio Art

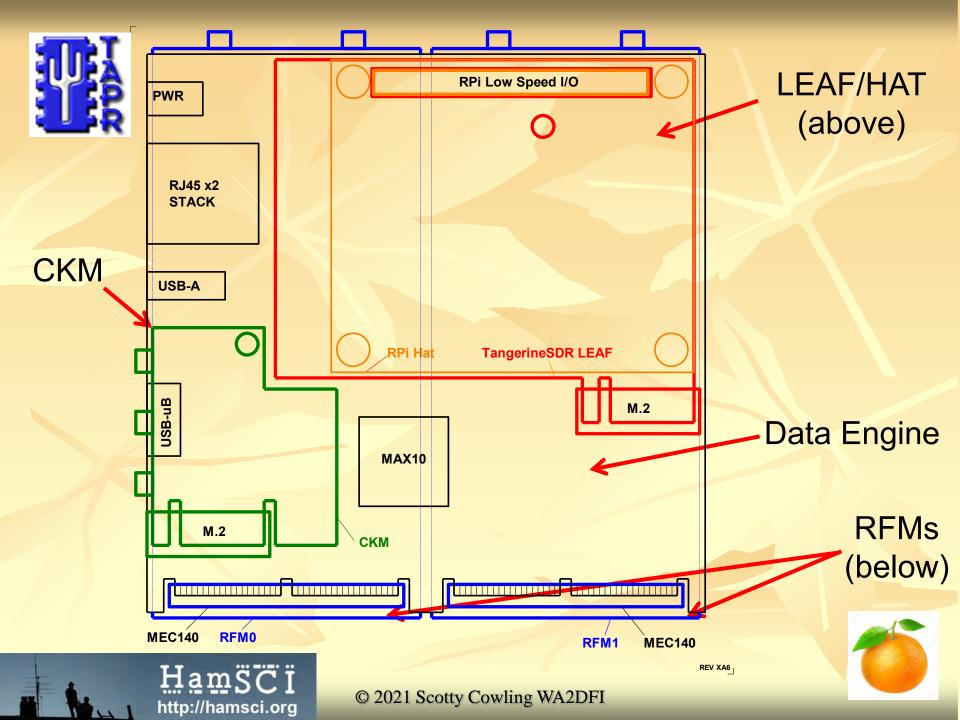
What is a TangerineSDR radio?

A TangerineSDR radio has four basic components:


- Data Engine baseboard
- RF Modules (RFM) two supported
- Clock Module (CKM)
- Compute Engine (typically an SBC Host Computer)

What is a TangerineSDR radio?

TangerineSDR System

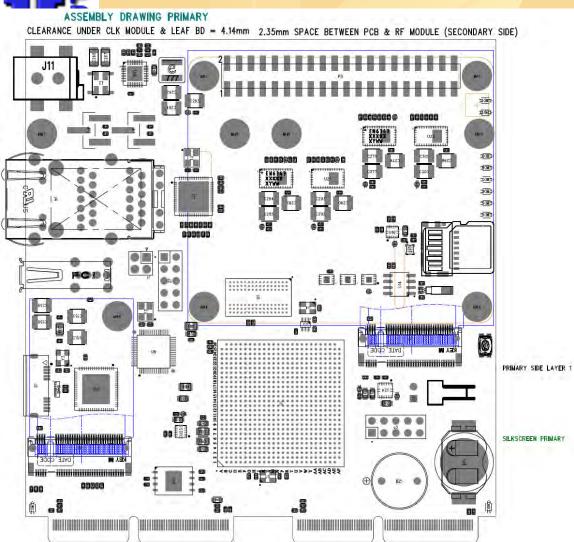


TangerineSDR Features

- FPGA-based Gb Ethernet direct sampling receiver
- □ Full receive coverage from 100kHz to 60MHz
- Web-based configuration
- Multiple UDP streams cover all bands from 160-6m
- Dual GbE, USB 3.0 and USB 2.0 simultaneous I/O
- Full transmit capability is future option

TangerineSDR DE Features

- Altera/Intel 10M50DAF672I6G FPGA 50K LEs
- □ 512MByte (256Mx16) DDR3L SDRAM
- □ 4Mbit (512K x 8) QSPI serial flash memory
- 512Kbit (64K x 8) serial EEPROM
- μSDXC memory card up to 2TByte


TangerineSDR DE Features

- 11-15V wide input, low noise SMPS
- 3-port GbE Switch (Dual GbE data interfaces)
- Cryptographic processor with key storage
- Temperature sensors (FPGA, ambient)
- Power-on reset monitor, fan header

TangerineSDR Data Engine

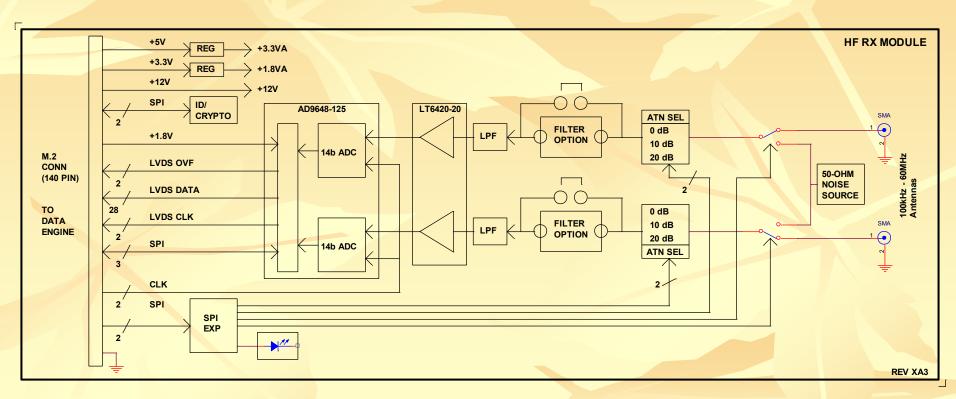
Future TangerineSDR DE Boards

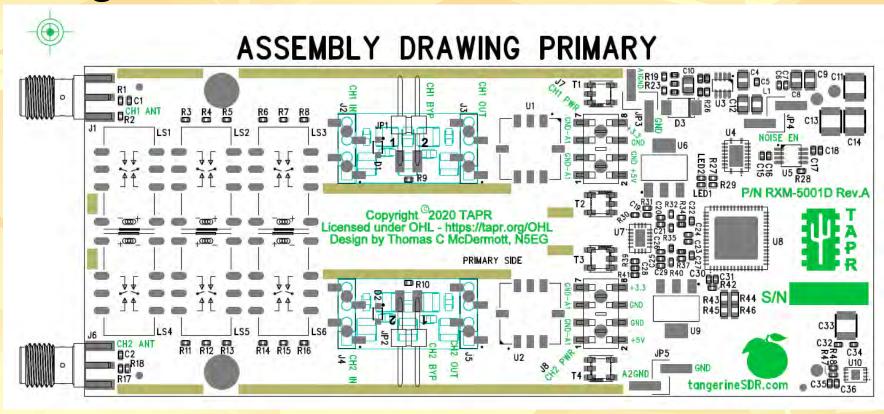
- Larger, faster FPGAs
- More DRAM storage
- More non-volatile (SATA, SSD, etc) storage
- □ Higher speed data ports (10GE, 40GE, USB 3.2, etc)

BUT...

The same RFM ports allow reuse of RF boards

TangerineSDR PSWS/HF RX Module


- AD9648-125 dual 14-bit 122.88Msps ADC
- OdB/10dB/20dB/30dB remotely switchable attenuator
- □ LTC6420-20 20dB LNA
- □ Fixed 55MHz Low Pass Filter
- Optional user-defined plug-in filter
- On-board, switchable 50-ohm calibration noise source
- On-board low-noise power supplies
- Dual SMA antenna connectors


TangerineSDR PSWS/HF RX Module

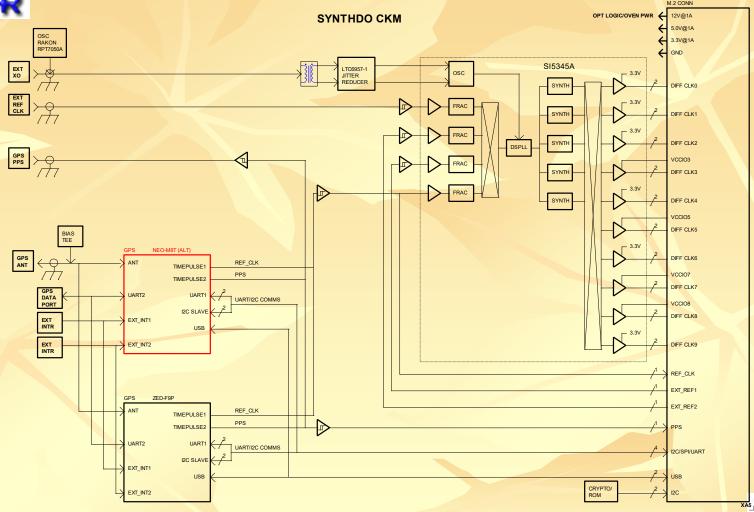
TangerineSDR PSWS/HF RX Module

TangerineSDR RF Modules

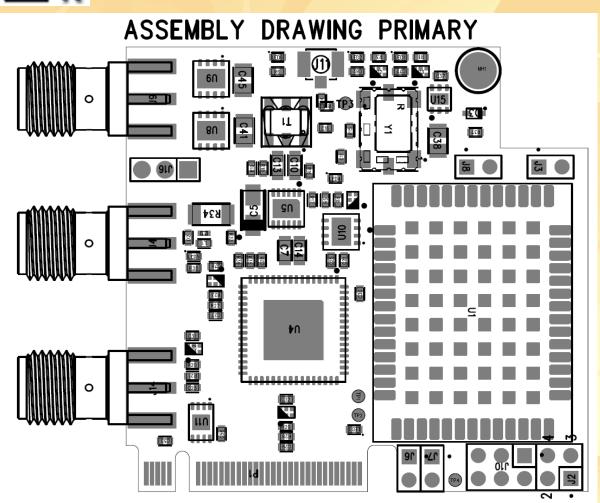
- Personal Space Weather Station Receiver (no TX needed)
- VLF Receiver Module for 10kHz to 200kHz reception
- P4G RX and P4G TX modules or P4G TRX single module
- □ AD9361 MIMO transceiver module (70MHz 6GHz)?
- □ Lime LMS7002M SDR Module (100kHz 3.8GHz)?
- □ Lime LMS8001+ SDR Module (100kHz 12GHz)?

Thank you to Tom McDermott N5EG for the PSWS RFM design!

Jonathan Rizzo KC3EEY will talk on the VLF RFM at 12:00PM today


TangerineSDR CKM Clock Module

- Rakon RPT7050A Ultra Stable TCXO
 - Sub 0.1ppm frequency stability
 - RMS phase noise down to 0.13ps
- High performance ublox ZED-F9T GPS
- Silicon Labs very low-jitter Si5345A multi-channel synthesizer
- Integrates directly with Data Engine
- Useable as a near-laboratory standard in optional carrier board

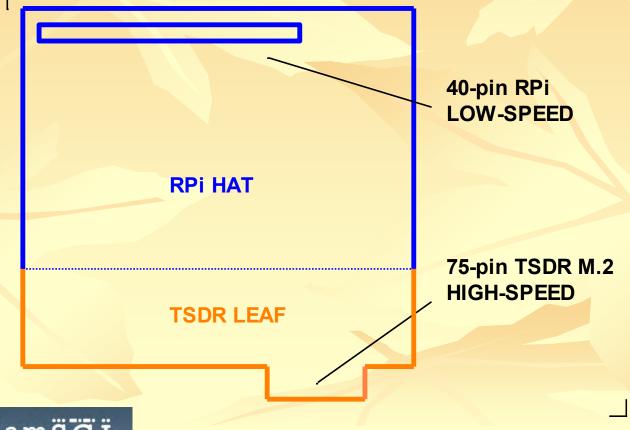


TangerineSDR SynthDO CKM

TangerineSDR CKM Clock Modules

- SYNTHDO CKM High Performance
 - High performance ublox ZED-F9T dual band GPS
- SYNTHDO Mid-grade performance (mfg option)
 - ublox NEO-M8T single-band GPS
- SYNTHDO Low-cost (mfg option)
 - ublox NEO-M9N single-band GPS, no pps output

John Ackermann, N8UR, will tell you all about it right after my talk!

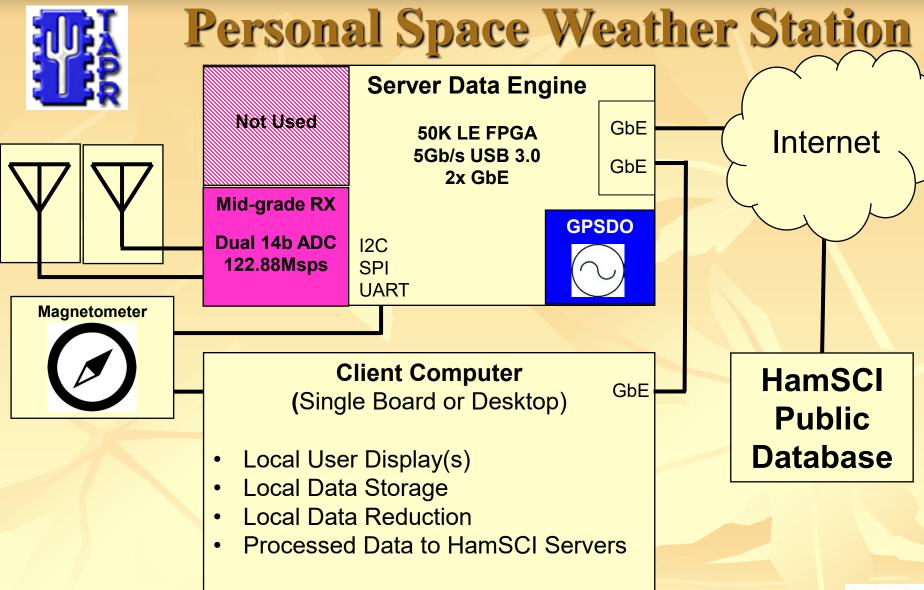


LEAF

Low-speed Expansion Adapter Fixture

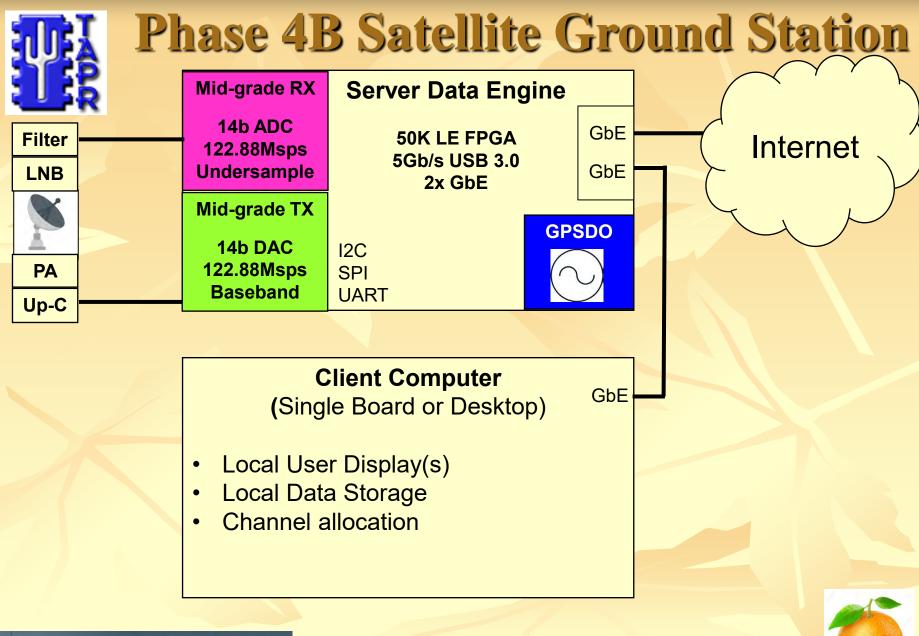
SDR Feature Comparison

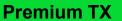
В	oard	type	RX ADC	TX DAC	data i/f	user i/f	DSP	Freq	Max BW	Cost
T	angerineSDR	Direct	14b@122M	n/a	GbE/UDP+USB 3	Web	10M50	100k-60M	20M	~\$500
R	TL-SDR HF	Direct	8b@28.8M	n/a	USB 2	USB 2	n/a	raw I/Q	1.6M	\$25
R	TL-SDR VHF+	Mix								
R	ed Pitaya 125-14	Direct	10b@125M	10b@125M	GbE	UDP	7010	300k-500M	60M	\$212
R	ed Pitaya 122-16	Direct	16b@122M	14b@122M			7020	DC-50M		\$604
K	wi SDR	Direct	14b@66.7M	n/a	10/100 Ethernet	Web	XC7A35	10k-30M	30M	\$299
Н	ackRF One	Mix	8b@22M	10b@22M	USB 2	USB 2	XC2C64	1M-6G	20M	\$299
Н	PSDR Atlas	Direct	16b@122M	14b@122M	10/100 Ethernet	UDP	3C40+	10k-55M	768k	~\$1500
Н	PSDR Hermes				GbE		3C40			~\$900
Н	ermes Lite	Mix	12b@76.8M	12b@153.6M	GbE	UDP	4CE22	130k-38.4M	384k	\$278
Li	meSDR USB	Mix	12b@160M	12b@640M	USB 3	USB 3	4CE40	100k-3.8G	61.44 <mark>M</mark>	\$315
Р	uto	Mix	12b@61M	12b@61M	USB 2	USB 2	7010	325M-3.8G	20M	\$249
R	X-188 HF	Direct	16b@122M	n/a	USB 3	USB 3	CYUSB	0-30M	8M	\$190
R	X-188 VHF+	Mix	8b@32M					30M-1.8G	2.4M	


What can I use it for?

Target Applications

- HamSCI Personal Space Weather Station (PSWS)
- Phase 4 Satellite Ground Station (P4G)
- Academic uses to teach SDR and FPGA techniques
- Amateur Communications SDR
- Experimenters' (Amateur and non-Amateur) SDR
- Remote Ham Radio
- Others?





Amateur HF Experimenter

Server Data Engine

16b ADC 122.88Msps

14b DAC **210Msps**

50K LE FPGA 5Gb/s USB 3.0 2x GbE

Premium

Remote User(s)

Internet

Client Computer

(Single Board or Desktop)

- Local User Display(s)
- Local Data Storage
- **Accessory Controls**
- **CW Skimmer**

Low Cost Remote Radio

Low Cost RX

12b ADC 80Msps

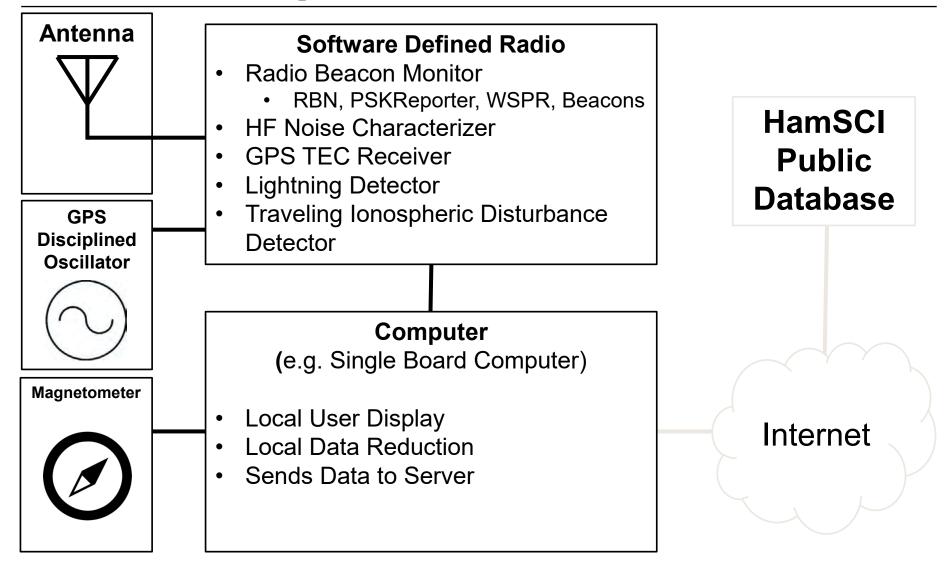
Low Cost TX

12b DAC 80Msps **Server Data Engine**

50K LE FPGA 5Gb/s USB 3.0 2x GbE

On Board

Not Used


Internet

Remote User(s)

Personal Space Weather Station

Software Features

What can I do with it besides PSWS?

- WSPR monitor
- FT8 monitor
- Simultaneous reception of all bands, while in use as PSWS
- Notifications via e-mail
- Full digital mode operation once transmit is implemented
- Server to multiple radio clients on local network

Bill Engelke AB4EJ will give a software demo at 12:20PM today

TAPR's MISSION

Support Digital Radio development with:

R&D funding

- Breadboard prototypes
- Alpha PCBs

Early volume production

Put leading edge technology into many hands

Result: A growing pool of contributors and experimenters with subsequent advancement of the radio art

Coming Up in September

ARRL/TAPR Digital Communications Conference September 17-19, 2021 Charlotte, NC

Our Web Page

TangerineSDR.com

Our E-mail Listserv

Post:

TangerineSDR@lists.tapr.org

Subscribe:

<u>lists.tapr.org/mailman/listinfo/</u>

