A Modular SDR
for
HamSCI and Other Users

Scotty Cowling, WA2DFI
A Few Quick Questions

Raspberry Pi Class SB Computer

How many do you own?
A Few Quick Questions

Raspberry Pi Class SB Computer

How many still in the box?
Let’s Talk Architecture
Personal Space Weather Station

Server Data Engine
- 50K LE FPGA
- 5Gb/s USB 3.0
- 2x GbE

Mid-grade RX
- 14b ADC
- 122.88Msps

Mid-grade TX
- 14b DAC
- 122.88Msps

GPSDO
- I2C
- SPI
- UART

Lo-speed Sensors
- I2C
- SPI
- UART
- GbE

Client Computer
- (Single Board or Desktop)
- Local User Display(s)
- Local Data Storage
- Local Data Reduction
- Processed Data to HamSCI Servers

Internet

HamSCI Public Database

http://hamsci.org
Phase 4B Satellite Ground Station

Server Data Engine
- 50K LE FPGA
- 5Gb/s USB 3.0
- 2x GbE

Mid-grade RX
- 14b ADC
- 122.88 Msps
- Undersample

Mid-grade TX
- 14b DAC
- 122.88 Msps
- Baseband

GPSDO
- I2C
- SPI
- UART

Client Computer
(Single Board or Desktop)
- Local User Display(s)
- Local Data Storage
- Channel allocation

Internet

- GbE
- GbE
- GbE

Filter
- LNB
- PA
- Up-C

HamSCI
http://hamsci.org
Amateur HF Experimenter

Server Data Engine
- 50K LE FPGA
- 5Gb/s USB 3.0
- 2x GbE

Premium RX
- 16b ADC
- 122.88 Msps

Premium TX
- 14b DAC
- 210 Msps

Client Computer
- (Single Board or Desktop)
- Local User Display(s)
- Local Data Storage
- Accessory Controls
- CW Skimmer

Remote User(s)

Internet
Low Cost Remote Radio

- **Server Data Engine**
 - 50K LE FPGA
 - 5Gb/s USB 3.0
 - 2x GbE

- **Low Cost RX**
 - 12b ADC
 - 80Msps

- **Low Cost TX**
 - 12b DAC
 - 80Msps

- **Internet**

- **Remote User(s)**
Premium Performance

Server Data Engine
- 110K LE SoC FPGA
- Dual-core ARM
- Linux O/S
- 5Gb/s USB 3.0
- 2x GbE

GPSDO

Client Computer
(Single Board or Desktop)
- Local User Display(s)
- Local Data Storage
- Accessory Controls
- CW Skimmer

Premium RX
- 16b ADC
- 122.88 Msps

Premium TX
- 14b DAC
- 210 Msps

Internet

Remote User(s)
So What Are We Going to Build?
Initial Considerations

It’s All About Tradeoffs

- Cost
 - Affects user base: lower cost => more users

- Capability
 - Affects cost: more capability => higher cost

- Size of User base
 - Affects cost: more users => higher volume => lower cost

- Adaptability to Different Applications
 - Affects user base: more diverse uses => more users

- Expandability and Upgradability
 - Project lifetime: more expandable => future proof (to a point)
Initial Considerations

Cost

TNC2 was $179 in 1985, which is about $420 in 2019

Keep the cost as low as possible to keep the user base as large as possible

Goal:
Sell the user only the hardware needed for the intended task!
Initial Considerations

Capability

More capability means higher cost

Don’t over-design

Goal:
Offer multiple production options where feasible
Initial Considerations

User Base

Try to make the user base as large as possible

Large production lots means lower cost per unit

Goal:

Get the word out to as many prospective customers as possible.
Initial Considerations

Adaptability to Different Applications

The more different applications, the wider the user base

Goal:
Make the hardware versatile enough to be used for multiple applications
Initial Considerations

Expandability and Upgradability

The more expandable the hardware, the longer its useful lifetime before becoming obsolete.

This only works to a point, especially in today’s climate of rapid progress.

Goal:
Make the hardware architecture upgradable to keep pace with advances in the state of the art.
Initial Considerations

To Summarize

- Keep the cost below $500, less if possible
- Offer production options to better match the hardware to the user’s application
- Spread the word
- Design architecture to target multiple applications
- Design architecture for expandability
System Architecture

Proposed Modular Solution
System Architecture

Proposed Modular Solution

[Diagram showing the system architecture with components such as SBC, GbE,CLK, GbE, USB 3.0, TRX, and Shield layers.]
System Architecture

- uber (top) Shield
- RF Modules go here
- Data Engine
- unten (bottom) Shield
- SBC
- neben (side) Shields go here (all 4 sides)
System Architecture

Production Options

- Three versions of Data Engine (DE)
 - Entry Level (low cost)
 - Basic Level (moderate cost, mainstream capability)
 - Advanced Level (highest cost, most capable)

- Many Versions of RX, TX and TRX boards
 - SWS RX (HF Receiver, 100kHz – 60MHz)
 - P4G RX and TX or single TRX (5G TX, 10G RX)
 - Experimenter (70MHz – 6GHz MIMO TRX)
System Architecture

Target Applications

- HamSCI Space Weather Station (SWS)
- Phase 4 Satellite Ground Station (P4G)
- Academic uses to teach SDR and FPGA techniques
- Amateur Communications SDR
- Experimenters’ (Amateur and non-Amateur) SDR
- Remote Ham Radio
- Others?
System Architecture

Expandability

- All RF Modules will work with all DEs
 - Subject to the DEs hardware limitations
- Custom configurations may require custom code
- Need more horsepower? Replace just the DE
- Need extended frequency range? Replace the RF module(s)
- Build an SWS, then change to a P4G station without starting over
What’s In a Name?

First Things First

- Everyone needs a catchy name
 - Lime SDR
 - Raspberry Pi
 - Orange Pi
 - Banana Pi
 - Red Pitaya
 - Graperain
What’s In a Name?

Orangesicle

IT’S

- Summertime Defined
- Fruity
- Delicious
- Nostalgic
- Orange!

Orange is the new black!
(And yes, Virginia, we can get orange solder mask)
Hardware Features

Orangsicle Data Engine Types

- Three initial versions of Data Engine (DE)
 - Entry Level (low cost)
 - Basic Level (moderate cost, mainstream capability)
 - Advanced Level (highest cost, most capable)

Entry Level and Basic Level can use the same PC Board!
(If we are careful designers!)
Hardware Features

Entry Level DE Features

- Altera/Intel 10M50DAF256C8G FPGA 50K LEs
- 11-15V wide input, low noise SMPS
- 3-port GbE Switch (Dual GbE data interfaces)
- 128Mx4bit QSPI Flash memory
- Temperature sensor
- Power-on reset monitor, fan header
Hardware Features

Entry Level DE Features, cont’d

- Two RF module sockets for varying RF price/performance
 - One TX and one RX module or
 - One TRX module
- One oscillator module socket for varying price/performance
 - Commodity grade TCXO, low cost
 - Low jitter, low phase noise VCXO, moderate cost
 - GPSDO, high performance, high cost
- Low speed GPIO for sensor and shield interfaces
- High speed, Single Ended or Differential GPIO
Hardware Features

Basic Level DE Features

All Entry Level features, plus:

- 5Gbps USB 3.0 data interface
- GPS receiver with active antenna and reference inputs
- Extremely low phase noise GPSDO
- Real-time clock with battery backup
Entry/Basic Level DE

© 2019 Scotty Cowling WA2DFI
Hardware Features

Advanced Level DE Features

All Basic Level features, plus:

- Altera/Intel C5 SoC FPGA, 110K LEs with dual ARM core
- 256MB of DDR SDRAM
- NVMe PCIe X4 SSD port
- Runs Linux networking stack
Hardware Features

Future DE Boards

- Larger, faster FPGAs
- More DRAM storage
- More non-volatile (SATA, SSD, etc) storage
- Higher speed data ports (10GE, 40GE, USB 3.2, etc)

BUT...

The same TX/RX module ports allow reuse of RF boards
DE Dual Module Physical Layout
DE Single Module Physical Layout
Hardware Features

Clock Modules

- Basic low-phase noise TXCO (e.g., Rakon RTX5032A)
- High performance VCXO (e.g., Crystek CVHD-950)
- Extreme performance OCXO
- Entry-level GPSDO (LEA-M8F?)
- High-Performance GPSDO (Jackson Labs LTE Lite?)
- Others, as required?
Orangesicle Clock Module

© 2019 Scotty Cowling WA2DFI
Oscillator Options

CVHD-950 VCXO
Phase Noise
Hardware Features

Orangsicle Shields

- ****uber (top) Shield****
 - Low-speed I/O expander for Sensors
 - May also contain on-board sensors

- ****unten (bottom) Shield****
 - Upper expansion connector mates with Data Engine (DE)
 - Side expansion connectors for one or more side shields
 - Lower expansion connector mates with SBC

- ****neben (side) Shield****
 - Typically contains on-board sensors
 - May provide additional low-speed ports for off-board sensors
Hardware Features

Supported Expansion

- Arduino Shield
- RPi Hat
- Beagle Board Cape
- Click modules
- PMOD (I2C/SPI/UART)
- Ultra96 high-speed expansion port
- Others with additional Orangsicle shields
Hardware Features

RF Modules

- Space Weather Station Receiver (if no TX needed)
- P4G RX and P4G TX modules or P4G TRX single module
- AD9361 MIMO transceiver module (70MHz – 6GHz)
- Lime LMS7002M SDR Module (100kHz – 3.8GHz)
- Lime LMS8001+ SDR Module (100kHz – 12GHz)
Hardware Features

SWS/HF RX Module

- LTC2145-14 dual 14-bit 122.88Msps ADC
- DAT-31A-SP+ 31-dB step attenuator
- **TBD** LNA
- Fixed 60MHz Low Pass Filter
- Optional user-defined plug-in filter
- On-board, switchable 50-ohm calibration noise source
- On-board low-noise power supplies
- Dual SMA antenna connectors
Hardware Features

SWS/HF RX Module

SWS/HF RX Module

- **DATA**
- **OVF**
- **14b ADC**
- **CLK**
- **14b ADC**
- **OVF**
- **MODE**
- **DATA**
- **ATN A SEL**
- **ATN B SEL**
- **CAL**

Antennas

100kHz - 60MHz

SMA

M.2 CONN (67 PIN)

TO DATA ENGINE

REG/FILTER

+5V

+1.8V

+3.3V

LTC2145-14

14b ADC

DAT-31A-SP+ 31 dB ATTEN

FILTER OPTION

50-OHM INPUT/LPF

SW

50-OHM NOISE SOURCE

© 2019 Scotty Cowling WA2DFI

http://hamsci.org
Thank you!

WA2DFI@ARRL.NET

WA2DFI@TAPR.ORG

SCOTTY@TONKS.COM