%
24

A
(s

|

3 17
AV “
RS

=== Nid-Latitude lonospheric ™
Response to the Solar Eclipse of
August 21, 2017/:
What do we learn from solar
eclipse studies?
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From radio wave propagation to ionosphere

Some conditicns and causes for large disturbances o Te and W
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Modifications of Electron Temperature and
Concentration in Ionospheric F Region Due
to Impact of High-Power Radio Waves
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Abstract. A decrease in the scatter cross-section was observed by incoherence B ey e
scatter radar during an emission of high-power radio waves by the heating facility. il
It was shown that this phenomenon was caused by a temperature increase and a 5
depletion of electron concentration in the F' region. i i
) S T, (8T )0 R0y 4O,

Introduction

During recent years, the impact of high-power radio
waves on the ionosphere has been studied extensively.
A number of experimental techniques have been de-
veloped for this purpose: test waves, Doppler delay,
satellite measurements, etc. The major results have
been obtained by the incoherent scatter radar tech-
nique, which provides details of spatial and temporal

linear or circular polarization in both pulse and contin-
uous modes

Remote sensing of the artificially disturbed ionosphere
is carried out by incoherent scatter radar and a verti-
cal sounder. A two-mirror antenna (diameter, 100 m)
with a fixed vertical directional pattern is used. The
design width of the radar field-of-view is less than 1°
and allows sounding of the plasma volume with a cross-
sectional diameter of ~7 km at altitude 200 km Fimura

meeting

Viewgraph for a

resolution. In particular, significant changes in iono- 1 shows the experimental scheme. A few ope
spheric parameters due to high-power decametric wave modes of the radar are used to obtam altitude p
emission are detected: the temperatures of electrons in-  ionospheric parameters. These modes differ by
crease by 50-300%, and their concentrations decrease by ~ ration and recurrence frequency of the soundin
15-70% ‘Dl:nmn et u{ 1088; Hansen et al., 1992]. and the data proccumg technique ’”"‘ dural
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e My first computer
program calculated HF
wave propagation in a

model ionosphere
* Very limited exposure
to ham radio

* We study ionosphere to understand
radio wave propagation

* We study radio wave propagation to
understand ionosphere




What changes do we expect to see due to the eclipse?

, — transport o IR

lon (and electron) Nl =Q—L +A-(N;V) 3/7
density continuity / N il miE |
equation production loss 5 o matier

TEC
=]

* Production: proportional to solar radiation;

decreases due to eclipse, decrease varies with ot i
height — dominant role - I |
* Loss: depends on composition and temperature; A3 Simulaﬁonsm )
varies with height — unknown role Huba et al, GRL 2017 P

* Transport: depends on a wind system —
unknown role




TEC model, 21-Aug-2017 18:32:30

How large is the ‘ionospheric hole’
due to the eclipse?

 The answer depends on the selection of a baseline. We tried
| ey g 2 methods, empirical TEC model (NATEC, Chen et al., 2015)
e and observations.

GNSS TEC, 29-Aug-2017 18:32:30
60 04/ N

 Top panel: NATEC results (F10.7 = 87, Fbar = 84, Ap=5).
North America TEC model works well and is a good indicator
of expected behavior in TEC

 Middle panel: Observations for Aug 29, 2017, closest day
with similar F10.7 (F10.7 = 84). Shows little lower TEC overall
and a patch of higher TEC at 90-110W.

 Bottom panel: Observations for Aug 21, 2017; much lower
TEC over entire continental US.

Coster et al., GRL, 2017



TEC change during Aug 21 eclipse

TEC diff. data-model, %, 21-Aug-2017, 18:32 TEC diff. data-data, %, 21-Aug-2017 and 29-Aug-2017, 18:32
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TEC data-model difference in % ; TEC data-data difference in %;
Max decrease in TEC is 50-60% Max decrease in TEC is 50-60%

* Solar eclipse causes decrease in electron density & TEC over the entire continental US

* Comparison of eclipse data (Aug 21) with NATEC model (left) and Aug 29, 2017 data (right)

* Results are very similar, regardless of a choice of background

* Largest decrease >60% is to the west of totality; shows nicely in model-data and data-data differences
* Strong depletions to the south of totality — see over Florida
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Can theoretical models reproduce eclipse effects?

18:30UT
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...GITM simulation includes thermosphere and reproduces well the depth and the size of
the ‘eclipse hole’. It also reproduces well post-eclipse increase in electron density...

TEC data

GITM simulations: Wu et al.,

subm. to GRL, U. of Michigan

GITM model
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electron density (x10° cm™)
N

block: no eclipse
red: eclipse
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...Initial prediction with
SAMI3 sees a 35% decrease
in TEC. The model does not
include thermospheric

changes and misses some

features, like recovery...

SAMI3 simulations,

Fully coupled ionosphere-thermosphere models can better capture eclipse-induced changes than
purely ionospheric models

Huba et al., GRL 2017,
NRL




Millstone Hill Geospace Facility: UHF lonospheric Radar

MISA 150—ft stee_rable antenna

."i "

Thomson / incoherent scatter
Full ionospheric altitude profiles
Wide field of view across eastern US (steerable)



lonospheric Changes Over North America During The 2017 Eclipse

15:30 UTC

18:15 UTC

Before eclipse During eclipse
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(figure: W. Rideout, MIT Haystack) Millstone Hill Geospace Facility
Westford, MA, USA

Google Eart

Decrease in electron density during the eclipse by a factor of ~2



2D Snapshot: F Region Electron Density Decrease
During The 2017 Eclipse

18:15 UTC

35-40% maximum [e-] density decrease
Electron density dip is asymmetric:

- ~4 deg equatorward of minimum

- ~ 1 deg poleward of minimum
Minimum [e-] within 1 deg latitude of totality
umbra’s latitude

Millstone Hill 21 August 2017
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lonospheric Changes Over Massachusetts During The 2017 Eclipse

( >1000 km away from totality)

* Gradual decrease in electron density 100-600
km at eclipse start, more than 1000 km away
from umbral shadow

* Quick recovery after eclipse

* Lower altitudes recovered faster than higher
altitudes

* Natural space weather variations occurred
even on non-eclipse day

Goncharenko et al,
subm. to GRL, 2018
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Vertical lonospheric Perturbations at Mid-Latitudes Seen With

I nCOhere nt Scatter Radar Change in Electron Density Ne, 101|1 eI/m|3
I S/ LY
« Expected electron density decrease during the c00 —0—T) ? 1
eclipse; peak decrease of 40% at ~230 km — E 008 K\M 1 : |
why not F1-region? é’
L

« Unexpected very large F region electron
density increase 21-24 UTC; delayed eclipse
effect [plasmasphere supply]? 100 +——

200 A

Unexpected very strong upward 40+ m/s F
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Goncharenko et al, subm. to GRL, 2018
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Plasma temperature changes, Millstone Hill ISR
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* There is a chill in the air during the eclipse; 150-

200 K cooling of electron temperature

Lower than 500-600 K cooling observed in

other eclipse cases — why?

Cooling is delayed; longer delay at higher

altitudes

* Cooling of ion temperature is 70-100 K;
symmetric around eclipse max above F-region
peak, longer delay below 200 km

Goncharenko et al, subm. to GRL, 2018
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Millstone Hill ISR and GITM model: Ne and Vi

GITM Results of [e-]
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GITM Results of V,(up)
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Initial state: GITM
electron density is higher
~ factor of 2

Model captures well
eclipse effects due to
change in ionization (Ne
decrease)

Effects related to
dynamics are more
challenging to simulate
(differences in Vi, height
of F2 region post-eclipse)

GITM simulations:
Aaron Ridley and
Chen Wu,

Wu et al.,
manuscript in
preparation
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I\/I|IIstone Hill ISR and GITM model: Ti and Te
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Differences in the
initial state: observed
Ti is colder than
predicted, but Te is
higher
Eclipse-induced
cooling in Te is lower
than predicted — why?

GITM simulations:
Aaron Ridley and
Chen Wu,

Wu et al.,
manuscript in
preparation



Summary

 Large volume of high-quality experimental data on different aspects
of ionospheric response to the eclipse of Aug 21, 2017

* Some ionospheric features are expected, some are not

e Significant difference in ionospheric response to eclipse in both
latitude and longitude

* Theoretical models capture well ionospheric variations related to
changes in ionization; simulation of dynamics is more challenging

 Large differences in eclipse response in different models



