Crowdsourced Lessons Learned from the 2017 Solar Eclipse LF Exercise

William C. Liles, Kiersten C. Kerby-Patel1,
Jill K. Nelson2, Laura A. Lukes2

This material is based upon work supported by the National Science Foundation under Grant Nos. 1638685 and 1638697. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
What is the EclipseMob project?

Crowdsourced effort to conduct a large-scale LF radio wave propagation experiment during 2017 solar eclipse.

Why? Crowdsourcing affords a large enough dataset for meaningful analysis.
Colorado WWVB Transmitter

US Government Time and Frequency Transmitter

Operates at 60 kHz

Always Transmitting!

The WWVB antenna is here.
WWVB Coverage*

Daylight Coverage Area

Nighttime Coverage Area

* This depicts coverage as “heard” by a tiny clock antenna.
Radio Luxembourg (1440kHz) recorded at Birmingham

Dawn

The eclipse

Radio Luxembourg (1440kHz) recorded at Birmingham

Dawn

Normal day
Project activities

Designing receiver systems/software (require little previous knowledge or tools) and **providing** kits

Creating web portal (resources, forum, collect data): EclipseMob.org

Designing and sharing K-12 lesson plans

Educational Webinars (with the Geological Society of America)

Public engagement events (libraries, museums, etc.) to **recruit & support** others to build/test
Project reach

- **150** kits delivered
- Additional participants designed/built their own receiver systems
- **80+** people follow the EclipseMob Facebook page
- Over **100** views on EclipseMob forum posts
- Over **7000** hits on EclipseMob.org
DIY Eclipse Mob Kits & Instructions

Antenna design with step-by-step instructions

Available receiver kits (Free!)

Integration
ANTENNA WITH/WITHOUT CAPACITOR

Movie courtesy of George Lemaster
Files Formats

JSON Files

```json
{
    "createdAt": "Aug 21, 2017 2:35:39 PM",
    "duration": 572.859,
    "id": "e98110fe-d70e-4735-a70a-4e00471fd328",
    "latitude": 26.xxxxxxx,
    "longitude": -80.xxxxxxx,
    "size": 50520064
}
```

Date File

- wav format mono with sampling rate
Spectrum Showing 18.2 kHz Signal
Design challenges:

- Student design group participation unreliable; required additional expertise
- Receiver designs didn’t meet usability needs or failed testing; including post release
- Problem with the app-receiver interface, extracting the signal has proven to be a challenging signal processing problem.

Key takeaways:

- Be prepared to seek outside help if needed
- Test, retest, retest equipment before releasing
Recruitment/Participation Challenges:

- Recruitment timeline primarily dependent on resource material availability
- Eclipse date limited # of potential class participants
- Participant data collection dependent on having kits/materials, help testing, and app to test before eclipse event
- Participants needed more on site support than we had capacity to provide before/day of experiment

Key takeaways:

- Have a working system and apps available BEFORE recruiting
- Don’t estimate release dates
- Maintain frequent and ongoing communications via email, social media, and Q&A events

Remote & on site Q&A Event at GMU Mix Space (Aug. 2017)
Data challenges:

• Due to a problem with the app-receiver interface, the WWVB signal strength is lower than we anticipated, so detecting and extracting the signal has proven to be a challenging signal processing problem.

• If data issue is unresolvable, how do you communicate experiment failure to citizen scientist participants in a way that minimizes negative attitudes towards STEM and the scientific community?

Key takeaways:

• Test, retest, retest before running experiment

• Be prepared to explain the value of work and contributions—designate a public relations person
Questions?
EclipseMob.org

Laura Lukes: Education, outreach, and evaluation design & management; project management; graduate student mentor -- llukes@gmu.edu

K.C. Kerby-Patel: Receiver & software design; kit development; undergraduate & graduate student mentor -- KC.Kerby-Patel@umb.edu

Jill Nelson: Signal processing; project and grant management; outreach; graduate student mentor -- jnelson@gmu.edu

Bill Liles: Experiment design; technical support; outreach; graduate student mentor

George LeMaster: Receiver design, testing, and outreach

Jennifer Henry: Communication & outreach specialist

Janet Oputa: Communication & outreach specialist

This material is based upon work supported by the National Science Foundation under Grant Nos. 1638685 and 1638697. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.