Ham Radio Activities at Marshall Space Flight Center during the 2017 Total Solar Eclipse: Transmitting Node

HamSCI Workshop February 23-24, 2018 NJIT, Newark, NJ

- Jesse McTernan, USRA/MSFC (KN4EZR)
- Linda Krause, MSFC (KODRK)
- Ghee Fry, MSFC (WL7C)

Ham Radio Activities at Marshall Space Flight Center

Solar activity on Monday, 21 August 2017 was relatively quiet

R3

R2

R1

©NOAA SWPC - SpaceWeatherLive.com

20:00

ŪЛ

Ū.

22. Aug

Space weather data from NOAA SWPC archives

X-ray activity plot from spaceweatherlive.com

Physical location and setup

Image from Google Maps

Location

lat	lon	Maidenhead
37.035796	-87.304767	EM67ia

Local eclipse contact times (CDT = UTC - 5)

C1	C2	C3	C4	
(Begin Partial)	(begin total)	(end totality)	(End Partial)	
11:56:48	13:24:57	13:27:24	14:51:43	CDT
16:56:48	18:24:57	18:27:24	19:51:43	UTC

Physical location and setup

Christian Way Farm Near Hopkinsville, KY

Physical location and setup: Antenna and Radio

Alpha Antenna

6-80M complete multiband 500W portable antenna

80 Watts

Two mistakes: didn't elevate antenna (5 feet) Installed matching network backwards

i) Icom 7300 (image from www.icomamerica.com)

February 23, 2018

HamSCI Workshop, NJIT

USRA/MSFC

The antenna was designed to operate on multiple ham bands

HamSCI Workshop, NJIT

Electrical Characteristics		
Frequency range	3.5 -29.7 MHz (54 MHz when mounted upon an optional tripod)	
Polarization	Horizontal and Vertical polarization	
RF power capacity (watts)	500 PEP SSB, 250 CW, or 100 digital	
Input impedance	50 ohms	
Radiation Pattern:		
Azimuth	Omnidirectional/Semi-Directional	
Elevation	NVIS & DX	
Physical Characteristics:		
Wind and ice	MilStick survives 70 MPH wind with no ice	
	13 feet when mounted on the Jaw Mount and 19 feet when mounted upon an	
Maximum Height erected	optional tripod	
Minimum foot-print required	3 foot by 3 foot + 25 foot NVIS -2.1	
Minimum Weight	2.00 pounds (MTCH-2.1 & MLSTK-2.1.XX)	

Data analysis (all contacts)

Data analysis (all contacts)

February 23, 2018

HamSCI Workshop, NJIT

USRA/MSFC

Data analysis (contacts on 20-m only)

February 23, 2018

HamSCI Workshop, NJIT

Data analysis (contacts on 30-m only)

February 23, 2018

HamSCI Workshop, NJIT

Data analysis (contacts on 40-m only)

February 23, 2018

HamSCI Workshop, NJIT

Discussion

Stats:

- 30 total contacts day of eclipse
- 12 contacts (40 meter)
- 10 contacts (30 meter)
- 8 contacts (20 meter)
- 10 unique DE stations
- 11 (most contacts with same DE)
- Wanted to use 80m (see lesson learned)

Observations

- Very limited internet!
 - Made dynamic experimentation nearly impossible
- Apparent directionality of contacts (as expected with NVIS)
- Low number of data points
- Lack of confirmed DE/DX locations
- Did not contact MSFC's receiving node (WL7C)
 - Lat: 36.50N, Lon: 87.34W, Distance: 60.61 km
- Work remains to extract science from this dataset

Band (meters)	Frequency Range (MHz)	Range (kHz)
20	14.00 - 14.35	350
30	10.10 - 10.15	50
40	7.00 - 7.30	300

Select ham-radio band plan, for reference

Future plans

Future Plans include a long-term receiving node at NSSTC

February 23, 2018

HamSCI Workshop, NJIT

USRA/MSFC

The receiving node (RBN, WSPRnet, PSKReporter, etc.) is almost running in "phase 1"

Equipment List:

Active Receive Antenna (DXE-ARAV3) Surge Protector (DXE-RLP75FF) SDR Hardware (SDRplay RSP2pro) SDR Software (SDRuno) Virtual Audio Cables (VB-CABLE) CW Decoder (CW Skimmer) NASA

Future plans: ray tracing with AF-Geospace and PIM

Preliminary Analysis

Frequency = 7 MHz (40m) Elevation span = 10 – 90 degrees Relevant ionospheric parameters

Notice how NVIS signals penetrate the F layer. (70 and 90 degrees)

Caveat: no collisions

Preliminary, not for reproduction

Future plans: ray tracing with IONOspheric Ray Tracing (IONORT)

Simulated 7-MHz ray pointed toward WL7C 60.6 km (37.7 miles) away at various elevations (electron density profiles created using IRI-2016)

Preliminary, not for reproduction

Future plans: ray tracing with IONOspheric Ray Tracing (IONORT)

- Transmitted on 20m, 30m, and 40m from within totality using 80 watts and NVIS antenna
- We are establishing a receiving node at NSSTC (MSFC)
 - RBN, WSPRnet, PSKReporter, other?
- We will use ray tracing to investigate why our DX and DE stations did not make contact
- We are hoping to apply our lessons learned during future eclipses!

Please connect with us:

- Experience setting up receiving nodes?
- Plans for future solar eclipses (2019, 2020, 2024)?
- Ray tracing?

Thank you for your attention!

Extra slides

