Eclipse Radio Science at NASA Marshall Space Flight Center

Ghee Fry, WL7C
Jesse McTernan, KN4EZR
Linda Rawlins

NASA Marshall Space Flight Center, Huntsville, AL

HamSCI Workshop | February 23-24, 2018
NJIT, Newark NJ
The MSFC Eclipse Radio Science Team

Team:

- Ghee Fry/WL7C: Heliophysics/Space Weather
- Linda Rawlins: Retired NASA/Citizen Scientist
- Jesse McTernan/KN4EZR: Heliophysics/Electrical Engineering
- Rob Suggs/KB5EZ: Space Environments/Meteoroids
- Linda Krause/K0DRK: Heliophysics/Ionosphere/Space Weather
- Dennis Gallagher: Heliophysics/Magnetospheres/Plasmaspheres
- Mitzi Adams: Heliophysics/Public Outreach

Tools:

- Ham Shack Rigs, Computers and Antennas
- Reverse Beacon Network
- Weak Signal Propagation Reporter Network
- Amateur Radio Community
Ionospheric Radio Wave Propagation
Engaging students and citizen scientists

Propagation (radio wave path)

- Lower frequencies (yellow)
- Higher (red) frequencies
- Different take-off angles

http://www.swpc.noaa.gov/phenomena/ionosphere
Eclipse Effects on Signal Path

- **Normal Summer Day**: (ignoring a lot of electrodynamic processes, and no E-Region)
 - D-Region absorbs 80M signals; 40M signals absorbed or signal strength decreases
- **Eclipse Day**: Solar EUV, X-rays decrease into eclipse; recovers out of eclipse
 - D-Region ionization reduced; ion-neutral recombination decreases electron density
 - Radio wave absorption decreases; 80M signals pass through D-Region
 - Erosion of lower F-Region raises ”reflection” height
 - Over-the-Horizon (OTH) signal paths lengthen; propagation range increases
 - Process reverses coming out of maximum eclipse

Left: Typical daytime signal paths.
Right: Signal paths during eclipse.

40M path —— 80M ----
Station Locations

WL7C, Northern TN
K0DRK, Southern KY
NN4SA, Northern AL

WL7C and K0DRK near Greatest Eclipse; NN4SA Northern Alabama

https://eclipse.gsfc.nasa.gov/eclipse.html / Google Map Data © 2018 Terms of Use
WL7C Reverse Beacon Network Receiver/Skimmer

APSU Farm, Clarksville, TN (36.65N, 87.34W), Grid Square: EM66hn
South of eclipse centerline

RBN Skimmer in Cow Barn
Eclipse Details at APSU Farm Site

Table 1. Solar eclipse events at Austin Peay State University Observatory/Farm in Clarksville, TN, WL7C’s RBN node location.

2017 Solar Eclipse

Lat.: 36.5623° N
Long.: 87.3386° W

Total Solar Eclipse
Duration of Totality: 2m24.1s
Magnitude: 1.009
Obscuration: 100.00%

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Time (UT)</th>
<th>Alt</th>
<th>Azi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of partial eclipse (C1):</td>
<td>2017/08/21</td>
<td>16:57:03.2</td>
<td>62.4°</td>
<td>149.7°</td>
</tr>
<tr>
<td>Start of total eclipse (C2):</td>
<td>2017/08/21</td>
<td>18:25:32.0</td>
<td>64.2°</td>
<td>198.9°</td>
</tr>
<tr>
<td>Maximum eclipse:</td>
<td>2017/08/21</td>
<td>18:26:44.1</td>
<td>64.1°</td>
<td>199.6°</td>
</tr>
<tr>
<td>End of total eclipse (C3):</td>
<td>2017/08/21</td>
<td>18:27:56.1</td>
<td>64.0°</td>
<td>200.2°</td>
</tr>
<tr>
<td>End of partial eclipse (C4):</td>
<td>2017/08/21</td>
<td>19:52:29.0</td>
<td>53.4°</td>
<td>235.2°</td>
</tr>
</tbody>
</table>

https://eclipse.gsfc.nasa.gov/eclipse.html / Google Map Data © 2018 Terms of Use
WL7C Reverse Beacon Network Skimmer

APSU Farm, Grid Square: EM66hn

HamSCI Workshop | February 23-24, 2018
Setting up WL7C at APSU
WL7C RBN Site and Antenna

82-foot DXE Alpha Delta fan dipole antenna for 80M, 40M, 20M, 10M
K0DRK Reverse Beacon Network Transmitter
North of eclipse centerline

K0DRK Reverse Beacon Network Transmitter
North of Hopkinsville, KY (37.04N, 87.30W)
Near eclipse centerline; Grid Square: EM67ia
80 watts feeding 10-80M Alpha Antenna
WL7C 40M Propagation Paths
August 21, 2017: Day of Eclipse

Propagation paths of stations received by WL7C August 21, 2017 between 1400-2000 UT. WL7C is at the apparent radiant point.
WL7C Spots: GCD Distance vs Longitude

Distances between DE (WL7C) and Contacted DX Nodes
(Calculated Using WGS 84 Reference Ellipsoid)
40m only
WL7C 40M (7.0 MHz): Contact Distance vs. Time
Day of Eclipse, August 21, 9:00-15:00 CDT

Colored lines represent spots from same station
WL7C Spots GCD Distance vs time
Day of Eclipse, August 21, 9:00-15:00 CDT

Distances between DE (WL7C) and Contacted DX Nodes
(Calculated Using WGS 84 Reference Ellipsoid)

Colored lines represent spots from same station
Marshall Amateur Radio Club (MARC) Station
NASA Marshall Space Flight Center
Huntsville, AL (34.64N, 86.68W),
Grid Square: EM64qp
Partial eclipse (96.5% obscuration)
5 watt transmitters on 80M and 40M
Weak Signal Propagation Reporter Map 8-21-17
Courtesy Robb Suggs, KB5EZ

NN4SA WSPR Propagation Paths – 80M band (3.5 MHz)

Red pins represent stations receiving NN4SA
NN4SA at radiant in North Alabama

wsprnet.org / Google Map Data © 2017 Terms of Use
80M (3.5 MHz) Signal to Noise Ratio vs Time
Courtesy Robb Suggs, KB5EZ

NN4SA to AG0G Propagation

Eclipse Day
Next Day

Start
End
Day after

Report dB relative to noise

Date

21.0
21.5
22.0
22.5
23.0

80m Reports NN4SA to AC0G 671km 319deg EM38ww

Range Heading
Missouri Grid
NN4SA WSPR 40M Transmitter Reception

Figure courtesy Robb Suggs, KB5EZ

WSPR SNR vs Time 7.0MHz

Reports of SNR on 40M by six WSPR stations showed enhancements of signals during the eclipse (red lines), but not on the day after (green lines). Figures indicates the range and azimuth from the NN4SA transmitter.
NN4SA WSPR 80M Transmitter Reception
Figure courtesy Robb Suggs, KB5EZ

WSPR Signal to Noise Ratio vs Time 3.5 MHz

Reports of SNR on 80M by six WSPR stations showed enhancements of signals during the eclipse (red lines), but not on the day after (green lines). Figures indicates the range and azimuth from the NN4SA transmitter.
Why Didn’t WL7C Hear K0DRK?

On the day of the eclipse, why didn’t WL7C hear K0DRK on 40M just 30 miles (53 km) away?

• **Line of Sight?**
 • Terrain and Distance over the horizon

• **Ground Wave?**
 • Distance, soil conductivity

• **Near Vertical Ionospheric Skywave (NVIS)?**
 • $foF2$, was near 4.0 MHz +/- 0.5 MHz,
 • $hmF2$, height of F2 layer peak, ranging 196-244 km.

• PIM says no
Parameterized Ionospheric Model (PIM)
40M Mid-Latitude Ray Traces

7.0 MHz radio wave ray paths at different elevation (take-off) angles (E)

F = Frequency
E = elevation angle

$foF2 \sim 3.5 - 4.5$ MHz,
$hmF2 \sim 196-244$ km.
Conclusions and Lessons Learned

Conclusions

• 2017 total solar eclipse demonstrated that HF radio science can be done:
 • On a shoestring budget
 • By professional, citizen scientists, students and the amateur radio community
 • Using grass roots crowd-sourced propagation spot aggregators (e.g., RBN, WSPR)

Lessons Learned

• Data quality can be impacted by the social nature of crowd-sourced observations: accuracy of location, timing, consistency
• Do the site survey BEFORE the eclipse !
• Radio Science is FUN !
Next Steps

• Improving ionospheric radio science capabilities:
 • Install RBN CW Skimmer and WSPR receivers at MSFC/NSSTC
 Upgrade SDR hardware, software, site location*
 • Continue to engage Hams, students and citizen scientists

• Preparing for the next Big Eclipse opportunity
 • Chile, 2019 (?)
 • Mexico/USA 2024

 NASA/MSFC Postdoc Jesse McTernan/KN4EZR’s Talk for details

* Core element of the future 'HamSCI in Space' initiative

Thanks to ARRL, Virginia Tech and academic community, HamSCI,
the Solar Eclipse QSO Party participants and especially the curators
and volunteers of RBN and WSPRnet and other spot aggregator sites
NASA On The Air

- Apollo 17 45th anniversary – 11-19 December 2017, beginning of event
- NASA founded 60th anniversary (act signed by President Eisenhower) – 29 July 1958
- ISS First Element Launch 20th anniversary – 20 November 1998
- ISS Node 1 Launch 20th anniversary – 4 December 1998
- 50th anniversary of Apollo 8 – launch 21 December 1968
- Apollo 8 – splashdown 27 December 1968, end of event

https://nasaontheair.wordpress.com