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Introduction
Quantum communication networks 
at a glance: 
➢ Utilize quantum properties for ultra-

secure communications and sensing 

➢ Depend on precision timing and signal 
integrity 

➢ Relies on maintaining strict 
synchronization and control over signal 
polarization 

➢ Sensitive to external disturbances
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Previous Work: 
❑ Coexistence of classical & quantum 

channels over single fiber [1] 
❑ Metro traffic vibrations impacting fiber 

links  [2] 
❑ Weather effects on time synchronization 

error [3][4]
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Motivation 4

8 APR 2024 
Total Solar Eclipse

To what extent do space weather 
features contribute to explaining 

the variance in time 
synchronization errors?



Time Sync Experimental Setup 5



Dataset Sourcing
Ground-based observatory data 
(SWPC): 
➢ F10.7 Index (10.7 cm radio flux) – 

solar radio emission measurements 
➢ SESC sunspot numbers – aggregated 

daily counts of visible sunspots 
➢Daily observations

6

Space-based observations (GOES-16): 
➢ X-Ray flux – solar X-ray emission 

measurements 
➢ Magnetometer – ambient 

magnetic field measurements 
➢ Second-by-second observations

Temporal Aggregation: 
➢ SWPC data provided as daily observations; uses daily mean aggregate of Time Sync Error  
➢ GOES-16 hi-res data aggregated (mean) to match Time Sync Error 1 sec obs. rate



Methodology
Analytical Strategy: 
➢Employ correlation and regression 

analyses 
➢Explore  potential connection between space 

weather and time sync error 
➢Determine degree of time sync error variance 

explainability for each predictor 
➢Test general linear models against 

observed data 
➢Apply data transforms to remediate violated 

model assumptions 
➢Account for curvilinear relationships 

➢Include polynomial expansion of feature space 
with interaction terms
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Model Evaluation: 
➢Quantitative: 

➢Coefficient of Determination, RMSE 
➢Qualitative: 

➢Residual analysis 
➢Examine suitability and limitations of 

regression model assumptions 



Results (Correlation Analyses – Daily Aggregates) 8



Results (Correlation Analyses – Daily Aggregates)
Post-transform on target variable (normalized logit)
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Results (Correlation Analyses – GOES-16 Data) 10



Results (Correlation Analyses – GOES-16 Data)
After selecting a subset of the combined data
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Results (Regression Analyses – Baseline) 12

MSE RMSE R2

16,485.845 128.397 -0.042
MSE RMSE R2

251.522 15.860 0.000



Results (Regression Analyses – Daily Aggregates) 13

MSE RMSE R2

8188.753 90.492 0.482
MSE RMSE R2

12,216.808 110.530 0.228



Results (Regression Analyses – Daily Aggregates) 14

MSE RMSE R2

7.852 2.802 0.420
MSE RMSE R2

23.758 4.874 -0.756

Post-transform on target variable (normalized logit)



Results (Regression Analyses – GOES-16 Data) 15

MSE RMSE R2

243.839 15.615 0.031
MSE RMSE R2

243.003 15.589 0.034



Results (Regression Analyses – GOES-16 Data) 16

MSE RMSE R2

140.728 11.863 0.148
MSE RMSE R2

139.217 11.800 0.158

Using data subset



Discussion
Cons: 
➢Limited  Predictive Power 

➢ Space weather may not be as strong as 
local predictors 

➢Model Assumption Violations 
➢Normality, homoscedasticity 

➢Non-Ideal Sample Size 
➢Limits statistical power of predictive 

models 

➢Transform tradeoffs 
➢Result in higher correlation, with 

reduced explainability  
➢Does not translate to better performance on 

original scale
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Pros: 
➢Select features may explain some 

time sync error variance 
➢F10.7 index, sunspot number 
➢Could offer insights WRT daily 

aggregates 

➢Informs future QNet modeling 
research



Summary
Key takeaways: 
➢Space weather may offer low to moderate explainability in variance of time 

synchronization error, but not for real-time applications 
➢Other confounding factors may be greater drivers for error (i.e. local weather) 
➢Space weather is far more likely to impact hardware systems supporting 

quantum networks (e.g. repeaters, White Rabbit switches) [6][7] 

Concluding remarks: 
➢Space weather is likely not a significant predictor of discrete time 

synchronization errors 
➢Additional data and modeling necessary to conclusively separate effects of local 

vs. space weather factors on QNet timing performance
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Thank you!
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