Abstract

We present a statistical study using ground magnetometer data from the Antarctic Automated Geophysical Observatories (AGO) to characterize open-closed boundary (OCB) behavior during geomagnetically quiet times. Knowledge of the location and dynamics of the magnetic field line OCB provides insight to space physics processes such as sub storms, particle precipitation events, and magnetospheric configuration. Prior studies have shown that determination of the OCB location can be made by examining the ULF wave power in data from a latitudinal chain of ground-based magnetometers extending from the auroral zone into the deep polar cap. In this statistical study, AGO 1, 2, 3, and 5, along with McMurdo (MCM) and South Pole Station (SPA) were studied. The seasons chosen were centered around the four cardinal dates, March 20th, June 21st, September 22nd, and December 21st. For each season, 60 days were selected centered around the cardinal date; any days with a planetary Ap greater than 20 were discarded. Using the H-component fluxgate data from South Pole Station, McMurdo Station and the AGO systems, an average daily residual power spectra was calculated. The spectrums for SPA, MCM, and AGO show signatures of whether the station is located in an open or closed magnetic region. We will present case studies of individual days and a climatology of ULF activity as a function of season.

Station Locations

The Polar Engineering Development Center (PEDC), at NJIT, operates and manages geospace instruments at South Pole Station (SPA), McMurdo Station (MCM), Palmer Station, and at the Automatic Geophysical Observatories.

These stations are in unique in that they:
• Are located over an expansive icecap
• Are conjugate w/Northern Hemisphere
• Are the only sites on Earth with coverage into the deep polar cap.

While equipment stationed at the named locations allows for reliable data transmission, the remote AGO systems must rely on Iridium contacts.

Quiet Time PSDs with Standard Deviations

CONCLUSIONS: As per Urban et al. [2011], synoptic fluxgate data can be used to identify the location of the OCB in a particular magnetic sector, which is most prevalently seen at AGO2, AGO3, and SPA. We currently are quantifying these OCB locations with band integrated data, with thresholding from AGOS to account for the influence of solar wind ULFs. There is seen to be greater variability in ULF data in the dusk-midnight section, likely due to ULFs as per Cooper et al. [2018]. Barring Iridium transmission issues and AGO power system concerns, the technique shows great potential for locating the OCB all year long, with an array of relatively simple instruments. Inclusion of other fluxgate magnetometers would further constrain the OCB location.

Acknowledgement: The work presented here was supported by the National Science Foundation Office of Polar Programs (PLR-1247075 and PLR-1445507) which partially supports AGO field operations on the Antarctic stations.