TY - CONF T1 - The Solar Eclipse QSO Party: Ionospheric Sounding Using Ham Radio QSOs T2 - Dayton Hamvention Y1 - 2017 A1 - Nathaniel A. Frissell A1 - Joshua D. Katz A1 - Andrew J. Gerrard A1 - Magdalina Moses A1 - Gregory D. Earle A1 - Robert W. McGwier A1 - Ethan S. Miller A1 - Stephen Kaeppler A1 - H. W. Silver AB -

The 2017 Total Solar Eclipse is expected to temporarily induce profound changes on ionospheric structure, dynamics, and radio propagation. The ARRL and HamSCI are sponsoring a Solar Eclipse QSO Party (SEQP) that will be used to generate to assist in imaging ionospheric changes before, during, and after the eclipse. Data will be collected through participant submitted logs and the use of automated tools such as the Reverse Beacon Network (RBN), PSKReporter, and WSPRNet. SEQP rules and a prediction of results will be presented.

JF - Dayton Hamvention CY - Xenia, OH ER - TY - CONF T1 - Experiment Design to Assess Ionospheric Perturbations During the 2017 Total Solar Eclipse T2 - Fall AGU - Poster Presentation Y1 - 2015 A1 - Magdalina Moses A1 - Gregory Earle A1 - Nathaniel Frissell A1 - Stephen Kaeppler AB -

On August 21, 2017, there will be a total solar eclipse over the United States traveling from Oregon to South Carolina. Solar eclipses offer a way to study the dependence of the ionospheric density and morphology on incident solar radiation. There are significant differences between the conditions during a solar eclipse and the conditions normally experienced at sunset and sunrise, including the east-west motion of the eclipse terminator, the speed of the transition, and the continued visibility of the corona throughout the eclipse interval. Taken together, these factors imply that unique ionospheric responses may be witnessed during eclipses. These include changes in the ionospheric electric fields, changes in the Total Electron Content (TEC) along paths through the eclipsed region, and variations in the density and altitude of the F2 peak. Several studies over the past century investigated these effects; however, some of the results from these studies are contradictory. These contradictions and the studies’ limited spatial resolution leave many fundamental questions unanswered. The advent of several mid-latitude Global Positioning System (GPS) and radar networks in the past few decades, such as the Continuously Operating Reference Station (CORS) system and the Super Dual Auroral Radar Network (SuperDARN) radar system, have enabled ionospheric observations with hitherto unprecedented spatial resolution. Also, the establishment of several nationwide amateur radio reporting systems, such as the Reverse Beacon Network (RBN) that monitors radio wave propagation on the high frequency (HF) bands, offers the potential for evaluating changes in ionospheric conditions with unprecedented spatial resolution. We propose to study the effects of the total solar eclipse on the ionosphere using a combination of GPS receivers, the SuperDARN radar system, HF band amateur radio, and plasma modeling. The overall objectives of this study are to characterize the changes in F-region plasma morphology during the eclipse over a larger spatial domain than any previous eclipse experiment. In addition, the amateur radio component of our study offers a unique opportunity to further engage the amateur radio community nationwide in a scientific study.

JF - Fall AGU - Poster Presentation PB - American Geophysical Union CY - San Francisco, CA ER - TY - CONF T1 - The Ionosphere's Pocket Litter: Exploiting Crowd-Sourced Observations T2 - Fall AGU - Oral Presentation Y1 - 2015 A1 - Ethan S. Miller A1 - Nathaniel Frissell A1 - Stephen Kaeppler A1 - Robert Demajistre A1 - Andrew Knuth AB -

One of the biggest challenges faced in developing and testing our understanding of the ionosphere is acquiring data that characterizes the latitudinal and longitudinal variability of the ionosphere. While there are extensive networks of ground sites that sample the vertical distribution, we have rather poor coverage over the oceans and in parts of the southern hemisphere. Our ability to validate the ionospheric models is limited by the lack of point measurements and those measurements that essentially constitute characterization of horizontal gradients. In this talk, we discuss and demonstrate the use of various types of crowd-sourced information that enables us to extend our coverage over these regions. We will discuss new sources of these data, concepts for new experiments and the use of these data in assimilative models. We note that there are new, low cost options for obtaining data that broaden the participation beyond the aeronomy/ionospheric community.

JF - Fall AGU - Oral Presentation PB - American Geophysical Union CY - San Francisco, CA ER -