@article {801, title = {Heliophysics and amateur radio: citizen science collaborations for atmospheric, ionospheric, and space physics research and operations}, journal = {Frontiers in Astronomy and Space Sciences}, volume = {10}, year = {2023}, month = {Apr-11-2024}, abstract = {

The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024{\textendash}2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities.

}, doi = {10.3389/fspas.2023.1184171}, url = {https://www.frontiersin.org/articles/10.3389/fspas.2023.1184171/fullhttps://www.frontiersin.org/articles/10.3389/fspas.2023.1184171/full}, author = {Frissell, Nathaniel A. and Ackermann, John R. and Alexander, Jesse N. and Benedict, Robert L. and Blackwell, William C. and Boedicker, Rachel K. and Cerwin, Stephen A. and Collins, Kristina V. and Cowling, Scott H. and Deacon, Chris and Diehl, Devin M. and Di Mare, Francesca and Duffy, Timothy J. and Edson, Laura Brandt and Engelke, William D. and Farmer, James O. and Frissell, Rachel M. and Gerzoff, Robert B. and Gibbons, John and Griffiths, Gwyn and Holm, Sverre and Howell, Frank M. and Kaeppler, Stephen R. and Kavanagh, George and Kazdan, David and Kim, Hyomin and Larsen, David R. and Ledvina, Vincent E. and Liles, William and Lo, Sam and Lombardi, Michael A. and MacDonald, Elizabeth A. and Madey, Julius and McDermott, Thomas C. and McGaw, David G. and McGwier, Robert W. and Mikitin, Gary A. and Miller, Ethan S. and Mitchell, Cathryn and Montare, Aidan and Nguyen, Cuong D. and Nordberg, Peter N. and Perry, Gareth W. and Piccini, Gerard N. and Pozerski, Stanley W. and Reif, Robert H. and Rizzo, Jonathan D. and Robinett, Robert S. and Romanek, Veronica I. and Sami, Simal and Sanchez, Diego F. and Sarwar, Muhammad Shaaf and Schwartz, Jay A. and Serra, H. Lawrence and Silver, H. Ward and Skov, Tamitha Mulligan and Swartz, David A. and Themens, David R. and Tholley, Francis H. and West, Mary Lou and Wilcox, Ronald C. and Witten, David and Witvliet, Ben A. and Yadav, Nisha} } @conference {581, title = {Construction and Operation of a HamSCI Grape Version 1 Personal Space Weather Station: A Citizen Scientist{\textquoteright}s Perspective}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

Measurement of Doppler shifts of high frequency (HF) radio signals emitted by precision frequency transmitters is a well-established technique for the detection of traveling ionospheric disturbances and other perturbations in the bottomside ionosphere. Because Doppler measurements require minimal instrumentation, this technique naturally lends itself to crowdsourced data collection, and purpose-built instrumentation platforms are desirable in order to maximize consistency and repeatability. However, even the best system only has value if it is used, and a robust and engaged community of citizen scientists is vital to sustaining instrumentation platforms. The Ham Radio Science Citizen Investigation (HamSCI) has developed a prototype, low-cost system for making HF Doppler shift measurements of signals from standards stations such as WWV (Fort Collins, Colorado, USA) and CHU (Ottawa, Ontario, Canada). This system, known as the Personal Space Weather Station Grape Version 1, consists of a low intermediate frequency (IF) mixer board, GPS disciplined oscillator, and Raspberry Pi. In collaboration with funded project scientists and engineers, volunteer HamSCI community members developed instructions for building and operating a Grape Version 1 on the HamSCI website. In this presentation, we explain the process for constructing a Grape Version 1 and discuss the experiences of volunteers who have built and are now operating this system. We also discuss preliminary data from these stations, which show dramatic Doppler shifts during sunrise and sunset and during solar events. Concurrent data from multiple proximal stations show shared features and can be used for validation. These stations constitute the first iteration of the Personal Space Weather Station network.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/845691}, author = {Hobart, Joseph R. and Farmer, James O. and Mikitin, Gary and Waugh, David and Benedict, Robert and Cerwin, Stephen A. and Collins, Kristina V, and Kazdan, David and Gibbons, John and Romanek, Veronica I. and Frissell, Nathaniel A.} } @proceedings {572, title = {Experimental and Computational Methods to Analyze Complex Doppler Behavior of Ionospherically Induced Doppler Shifts on HF Signals (Proceedings)}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/MHkz7jNynOg?t=18161}, author = {Cerwin, Stephen A. and Collins, Kristina V. and Joshi, Dev Raj and Frissell, Nathaniel A.} } @conference {583, title = {Experimental and Computational Methods to Analyze Complex Doppler Behavior of Ionospherically Induced Doppler Shifts on HF Signals}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

The HamSCI community has been studying apparent frequency shifts in the reception of HF skywave signals from radio station WWV in Ft. Collins, CO. Causes for frequency shifts in the received signal are recognized as complex and varied. Leading candidates are Doppler shifts resulting from dynamic changes in refraction layer height and the behavior of modes at incidence angles at the cusp between escape into space and refraction back to earth. Observations have shown the most radical frequency disturbances occur during the diurnal transitions between night and day, with the morning transitions exhibiting more radical behavior than evening. Other changes in solar radiation such as passage of an eclipse shadow or solar flares produce similar results. In all cases the frequency swings were found to follow the rate of change of propagation path length. Specific behaviors studied include mode splitting, where the Doppler shift diverges into multiple overtone-related tracks, modes that abruptly manifest and disappear during the transition, and asymptotic behavior where Doppler tracks exhibit a rapid frequency change followed by extinction. A morning transition spectrogram showing some of these characteristics is shown in the accompanying figure. This paper describes experiments and analytical procedures devised to better understand these phenomena. They include Time-of-Flight measurements reconciled with a geometric model of the ionosphere to infer propagation modes, use of the geometric model to calculate layer height changes from measured Doppler shifts, and comparison of specific features between spectrogram and ionosonde data sets. Data from two morning transitions and the 2017 total eclipse are given. Plausible explanations for several aspects of observed frequency swings are postulated.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/849071}, author = {Cerwin, Stephen A. and Collins, Kristina V. and Joshi, Dev Raj and Frissell, Nathaniel A.} } @proceedings {561, title = {HamSCI Personal Space Weather Station (PSWS): Fall 2021 Update}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/MHkz7jNynOg?t=1990}, author = {Frissell, Nathaniel A. and Joshi, Dev Raj and Collins, Kristina and Montare Aidan and Kazdan, David and Engelke, William D. and Atkison, Travis and Kim, Hyomin and Cowling, Scott H. and McDermott, Thomas C. and Ackermann, John and Witten, David and Madey, Jules and Silver, H. Ward and Liles, W. and Cerwin, Stephen A. and Erickson, Phillip J. and Miller, Ethan S, and Vierinen, Juha} }