@conference {586, title = {Amateur Radio Communications as a Novel Sensor of Large Scale Traveling Ionospheric Disturbances (Invited)}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

Amateur (ham) radio high frequency (HF) communications are routinely observed by automated receiving systems on a quasi-global scale. As these signals are modulated by the ionosphere, it is possible to use these observations to remotely sense ionospheric dynamics and the coupled geospace environment. In this presentation, we demonstrate the use of these data to observe Large Scale Traveling Ionospheric Disturbances (LSTIDs), which are quasi-periodic variations in F region electron density with horizontal wavelengths \> 1000 km and periods between 30 to 180 min. On 3 November 2017, LSTID signatures were detected simultaneously over the continental United States in observations made by global HF amateur radio observing networks and the Blackstone (BKS) SuperDARN radar. The amateur radio LSTIDs were observed on the 7 and 14 MHz amateur radio bands as changes in average propagation path length with time, while the LSTIDs were observed by SuperDARN as oscillations of average scatter range. LSTID period lengthened from T ~ 1.5 hr at 12 UT to T ~ 2.25 hr by 21 UT. The amateur radio and BKS SuperDARN radar observations corresponded with Global Navigation Satellite System differential Total Electron Content (GNSS dTEC) measurements. dTEC was used to estimate LSTID parameters: horizontal wavelength 1136 km, phase velocity 1280 km/hr, period 53 min, and propagation azimuth 167{\textdegree}. The LSTID signatures were observed throughout the day following ~400 to 800 nT surges in the Auroral Electrojet (AE) index. As a contrast, 16 May 2017 was identified as a period with significant amateur radio coverage but no LSTID signatures in spite of similar geomagnetic conditions and AE activity as the 3 November event. We hypothesize that atmospheric gravity wave (AGW) sources triggered by auroral electrojet intensifications and associated Joule heating are the source of the LSTIDs, and discuss possible reasons why LSTIDs were observed in November but not May.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/822746}, author = {Frissell, Nathaniel A. and Sanchez, Diego F. and Perry, Gareth W. and Kaeppler, Steven R. and Joshi, Dev Raj and Engelke, William and Thomas, Evan G. and Coster, Anthea J. and Erickson, Philip J. and Ruohoniemi, J. Michael and Baker, Joseph B. H.} } @proceedings {572, title = {Experimental and Computational Methods to Analyze Complex Doppler Behavior of Ionospherically Induced Doppler Shifts on HF Signals (Proceedings)}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/MHkz7jNynOg?t=18161}, author = {Cerwin, Stephen A. and Collins, Kristina V. and Joshi, Dev Raj and Frissell, Nathaniel A.} } @conference {583, title = {Experimental and Computational Methods to Analyze Complex Doppler Behavior of Ionospherically Induced Doppler Shifts on HF Signals}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

The HamSCI community has been studying apparent frequency shifts in the reception of HF skywave signals from radio station WWV in Ft. Collins, CO. Causes for frequency shifts in the received signal are recognized as complex and varied. Leading candidates are Doppler shifts resulting from dynamic changes in refraction layer height and the behavior of modes at incidence angles at the cusp between escape into space and refraction back to earth. Observations have shown the most radical frequency disturbances occur during the diurnal transitions between night and day, with the morning transitions exhibiting more radical behavior than evening. Other changes in solar radiation such as passage of an eclipse shadow or solar flares produce similar results. In all cases the frequency swings were found to follow the rate of change of propagation path length. Specific behaviors studied include mode splitting, where the Doppler shift diverges into multiple overtone-related tracks, modes that abruptly manifest and disappear during the transition, and asymptotic behavior where Doppler tracks exhibit a rapid frequency change followed by extinction. A morning transition spectrogram showing some of these characteristics is shown in the accompanying figure. This paper describes experiments and analytical procedures devised to better understand these phenomena. They include Time-of-Flight measurements reconciled with a geometric model of the ionosphere to infer propagation modes, use of the geometric model to calculate layer height changes from measured Doppler shifts, and comparison of specific features between spectrogram and ionosonde data sets. Data from two morning transitions and the 2017 total eclipse are given. Plausible explanations for several aspects of observed frequency swings are postulated.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/849071}, author = {Cerwin, Stephen A. and Collins, Kristina V. and Joshi, Dev Raj and Frissell, Nathaniel A.} } @proceedings {559, title = {HamSCI: Ham Radio Science Citizen Investigation}, year = {2021}, month = {09/2021}, publisher = {International Space Weather Action Team (ISWAT)}, address = {Virtual}, author = {Frissell, Nathaniel A. and Sanchez, Diego and Perry, Gareth W. and Kaeppler, Stephen R. and Joshi, Dev Raj and Engelke, William D. and Thomas, Evan G. and Coster, Anthea J. and Erickson, Philip J. and Ruohoniemi, J. Michael and Baker, Joseph B. H. and Gerzoff, Robert} } @proceedings {561, title = {HamSCI Personal Space Weather Station (PSWS): Fall 2021 Update}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/MHkz7jNynOg?t=1990}, author = {Frissell, Nathaniel A. and Joshi, Dev Raj and Collins, Kristina and Montare Aidan and Kazdan, David and Engelke, William D. and Atkison, Travis and Kim, Hyomin and Cowling, Scott H. and McDermott, Thomas C. and Ackermann, John and Witten, David and Madey, Jules and Silver, H. Ward and Liles, W. and Cerwin, Stephen A. and Erickson, Phillip J. and Miller, Ethan S, and Vierinen, Juha} } @proceedings {578, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in the WWV Signal Received with a Network of Low-Cost HamSCI Personal Space Weather Stations}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/kVY3E3e--_I?t=3495}, author = {Romanek, Veronica I. and Frissell, Nathaniel A. and Joshi, Dev Raj and Liles, William and Trop, Claire and Collins, Kristina and Perry, Gareth W.} } @conference {580, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in the WWV Signal Received with a Network of Low-Cost HamSCI Personal Space Weather Stations}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3-30 MHz) refracted radio waves. We present observations of TIDs made with a network of Ham Radio Science Citizen Investigation (HamSCI) Low-Cost Personal Space Weather Stations (PSWS) with nodes located in Pennsylvania, New Jersey, and Ohio. The TIDs were detected in the Doppler shifted carrier of the received signal from the WWV frequency and time standard station near Fort Collins, CO. Using a lagged cross correlation analysis, we demonstrate a method for determining TID wavelength, direction, and period using the collected WWV HF Doppler shifted data.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/888443}, author = {Romanek, Veronica I. and Frissell, Nathaniel A. and Joshi, Dev Raj and Liles, William and Trop, Clair and Collins, Kristina and Perry, Gareth W.} } @proceedings {577, title = {Observations of Mid-latitude Irregularities Using the Oblique Ionosonde Sounding Mode for the HamSCI Personal Space Weather Station (Proceedings)}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/kVY3E3e--_I?t=2542}, author = {Joshi, Dev Raj and Frissell, Nathaniel A. and Liles, William and Vierinen, Juha} } @conference {585, title = {Observations of Mid-latitude Irregularities Using the Oblique Ionosonde Sounding Mode for the HamSCI Personal Space Weather Station}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

The spread in the echoes of high-frequency (HF, 3-30 MHz) radio waves from the F-region of the ionosphere was one of the earliest indications of plasma density irregularities in the mid-latitude F region ionosphere. Although mid-latitude spread F has been widely studied, the plasma instability mechanisms that create these irregularities are still largely unknown. This phenomenon can cause radio wave scintillation effects that degrade the performance of human-made technologies such as satellite communications and Global Navigation Satellite Systems (GNSS). Understanding these irregularities so that they can be anticipated and mitigated are important aspects of space weather research. The occurrence climatology and variability can also be helpful in validating models of these irregularities. Here, we present signatures of mid-latitude irregularities observed in oblique ionograms received near Scranton, PA transmitted by the Relocatable Over-the-Horizon Radar (ROTHR) in Chesapeake, Virginia. These observations are collected with the GNU Chirpsounder2 software, an open source software package capable of creating ionograms from frequency modulated (FM) chirp ionosondes. This ionospheric sounding mode will be implemented in the currently under-development Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS), a ground-based multi-instrument system designed to remote-sense the ionosphere using signals of opportunity. Using the data from the oblique ionograms, we generate the Range Time Intensity (RTI) plots that show ionospheric dynamics through measured path length variations as a function of time. We also compare the RTI plots with Range-Time-Parameter (RTP) plots from the SuperDARN HF radar in Blackstone, Virginia which commonly observes direct backscatter from decameter-scale irregularities within the region of ionosphere traversed by the ROTHR signal.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/875589}, author = {Joshi, Dev Raj and Frissell, Nathaniel A. and Sarwar, M. Shaaf and Sami, Simal and Ruohoniemi, J. Michael and Baker, Joseph B. H. and Coster, Anthea J. and Erickson, Philip J. and Liles, William and Vierinen, Juha and Groves, Keith} } @proceedings {556, title = {Simultaneous observations of mid-latitude Ionospheric Irregularities in HamSCI Personal Space Weather Station and SuperDARN radar}, year = {2021}, month = {05/2021}, publisher = {SANSA}, address = {Virtual}, url = {https://www.sansa.org.za/events-outreach/superdarn-workshop-2021/}, author = {Joshi, Dev Raj and Frissell, Nathaniel A. and Liles, William and Vierinen, Juha} } @proceedings {555, title = {Sources of Large Scale Traveling Ionospheric Disturbances Observed using HamSCI Amateur Radio, SuperDARN, and GNSS TEC}, year = {2021}, month = {05/2021}, publisher = {SANSA}, address = {Virtual}, url = {https://www.sansa.org.za/events-outreach/superdarn-workshop-2021/}, author = {Frissell, Nathaniel A. and Sanchez, Diego F. and Perry, Gareth W. and Joshi, Dev Raj and Engelke, William D. and Thomas, Evan G. and Coster, Anthea J. and Erickson, Philip J. and Ruohoniemi, J. Michael and Baker, Joseph B. H.} } @proceedings {574, title = {Sources of Large Scale Traveling Ionospheric Disturbances Observed using HamSCI Amateur Radio, SuperDARN, and GNSS TEC}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/MHkz7jNynOg?t=22608}, author = {Frissell, Nathaniel A. and Sanchez, Diego F. and Perry, Gareth W. and Kaeppler, Stephen R. and Joshi, Dev Raj and Engelke, William D. and Thomas, Evan G. and Coster, Anthea J. and Erickson, Philip J. and Ruohoniemi, J. Michael and Baker, Joseph B. H.} }