@proceedings {751, title = {Toward Developing an Algorithm for Separation of Transmitters of High Frequency Chirp Signals of Opportunity for the Purpose of Ionospheric Sounding}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, author = {Simal Sami and Nisha Yadav and Nathaniel A. Frissell and Robert Spalletta and Declan Mulhall and Dev Raj Joshi and Juha Vierinen} } @proceedings {747, title = {Web-Based Application for the Visualization and Analysis of Ionogram Data Observed by GNU Chirpsounder2}, year = {2023}, month = {03/2022}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

The focus of my system is to develop a web-based application for the visualization and analysis of data observed by GNU Chirpsounder2. We receive many ionograms each day from different transmitters around the world. Currently, data is in an unsorted format, so my initial task is to classify ionograms by chirp-rate and distance of the transmitter from the receiver. Once these two parameters are identified, it is necessary to have a method for sorting, analyzing, and visualizing the collected ionograms to conduct scientific studies or make the observations useful for radio communications operations.

}, author = {Nisha Yadav and Simal Sami and Dev Raj Joshi and Nathaniel A. Frissell and Robert A. Spalletta and Paul M. Jackowitz and Juha Vierinen} } @proceedings {619, title = {Mid-latitude Irregularities Observed by the Oblique Ionosonde Sounding Mode for the HamSCI Personal Space Weather Station}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

The spread in the echoes of high-frequency (HF, 3-30 MHz) radio waves from the F-region of the ionosphere was one of the earliest indications of plasma density irregularities in the mid-latitude F region ionosphere. Although mid-latitude spread F has been widely studied, the plasma instability mechanisms that create these irregularities are still largely unknown. This phenomenon can cause radio wave scintillation effects that degrade the performance of human-made technologies such as satellite communications and Global Navigation Satellite Systems (GNSS). Here, we present signatures of mid-latitude irregularities observed in oblique ionograms received near Scranton, PA transmitted by the Relocatable Over-the-Horizon Radar (ROTHR) in Chesapeake, Virginia. These observations are collected with the GNU Chirpsounder2 software, an open source software package capable of creating ionograms from frequency modulated (FM) chirp ionosondes. This ionospheric sounding mode will be implemented in the currently under-development Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS), a ground-based multi-instrument system designed to remote-sense the ionosphere using signals of opportunity. Using the data from the oblique ionograms, we generate the Range Time Intensity (RTI) plots that show ionospheric dynamics through measured path length variations as a function of time. We also compare the RTI plots with Range-Time-Parameter (RTP) plots from the SuperDARN HF\  radar in Blackstone, Virginia which commonly observes direct backscatter from decameter-scale irregularities within the region of ionosphere traversed by the ROTHR signal. We also investigate the dependence of the occurrence of the mid-latitude irregularities on the level of the geomagnetic activity.

}, author = {Dev Raj Joshi and Nathaniel A. Frissell and Juha Vierinen} } @proceedings {644, title = {An Overview of Oblique Soundings from Chirp Ionosondes}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

An ionospheric sounder, typically known as an ionosonde, is a radar device which is used to make observations of the ionized layer of the Earth{\textquoteright}s upper atmosphere known as the ionosphere. The ionosonde works by transmitting high frequency (HF, 3-30 MHz) radio waves and observing the time delay of the ionospheric echoes. Ionosondes play an especially crucial role in our understanding both ionospheric dynamics and how radio wave propagation is impacted by the ionosphere. The data from an ionosonde is displayed in a type of plot known as an ionogram. A chirp ionosonde is a type of ionospheric sounder that produces ionograms by transmitting an HF signal that changes linearly in frequency with time. Conventional chirp ionosondes are used in a vertical sounding mode, in which signals are transmitted directly up to the ionosphere. This allows for measurements of electron density as a function of height for the bottomside ionosphere. Chirp ionosondes may also be used in an oblique sounding configuration, in which the transmitter and receiver are separated by a significant geographic distance. While the measurements of an oblique sounder are more complicated to interpret than a vertical sounder, a single transmitter can be used simultaneously by receivers in many different locations, thus allowing for a cost-effective increase in the number of ionospheric sampling points. The HamSCI Personal Space Weather Station plans to take advantage of this fact by using signals-of-opportunity from the global network of pre-existing chirp ionosonde transmitters. In this presentation, we give a brief overview of chirp ionosondes and their uses in studying ionospheric dynamics.

}, author = {Simal Sami and Nathaniel A. Frissell and Mary Lou West and Dev Raj Joshi and Juha Vierinen} } @conference {544, title = {HamSCI Personal Space Weather: Architecture and Applications to Radio Astronomy}, booktitle = {Annual (Summer) Eastern Conference}, year = {2021}, month = {07/2021}, publisher = {Society of Amateur Radio Astronomers (SARA)}, organization = {Society of Amateur Radio Astronomers (SARA)}, address = {Virtual}, abstract = {

The Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project is a citizen science initiative to develop a new modular set of ground-based instrumentation for the purpose of studying the structure and dynamics of the terrestrial ionosphere, as well as the larger, coupled geospace system. PSWS system instrumentation includes radio receivers sensitive to frequencies ranging from the very low frequency (VLF) through very high frequency (VHF) bands, a Global Navigation Satellite System (GNSS) receiver to provide Total Electron Content (TEC) measurements and serve as a precision time and frequency reference, and a ground magnetometer sensitive to ionospheric and geospace currents. Although the PSWS is designed primarily for space weather and space science, its modular and open design in both hardware and software allows for a variety of use cases. The core radio instrument of the PSWS, the TangerineSDR, is a wideband, direct sampling 100~kHz to 60~MHz field programmable gate array (FPGA)-based software defined radio (SDR) receiver with direct applicability to radio astronomy. In this paper, we describe the PSWS and TangerineSDR architecture, show examples of how the TangerineSDR could be used to observe Jovian decametric emission, and discuss the applicability of the TangerineSDR to radio astronomy in general.

}, url = {https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference}, author = {Nathaniel A. Frissell and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Typinski and William D. Engelke and David R. Larsen and David G. McGaw and Hyomin Kim and David M. Witten, II and Julius M. Madey and Kristina V. Collins and John C. Gibbons and David Kazdan and Aidan Montare and Dev Raj Joshi and Veronica I. Romanek and Cuong D. Nguyen and Stephen A. Cerwin and William Liles and Jonathan D. Rizzo and Ethan S. Miller and Juha Vierinen and Philip J. Erickson and Mary Lou West} } @conference {545, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in a WWV Signal Received with a Network of Low-Cost HamSCI Personal Space Weather Stations}, booktitle = {Annual (Summer) Eastern Conference}, year = {2021}, month = {07/2021}, publisher = {Society of Amateur Radio Astronomers (SARA)}, organization = {Society of Amateur Radio Astronomers (SARA)}, address = {Virtual}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3-30 MHz) refracted radio waves. One way to detect TIDs is through the use of a Grape Personal Space Weather Station (PSWS). The Grape PSWS successfully detected TIDs in the Doppler shifted carrier of the received signal from the 10 MHz WWV frequency and time standard station in Fort Collins, CO. This paper will present an explanation of how the Grape PSWS was used to collect data, and how scientist can use this data to further investigate the ionosphere.

}, url = {https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Raj Joshi and William Liles and Claire C. Trop and Kristina V. Collins and Gareth W. Perry} }