@conference {144, title = {Characterizing the Ionosphere Using a Commercial Off the Shelf Software Defined Radio System}, booktitle = {Fall 2016 American Geophysical Union}, year = {2016}, month = {12/2016}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francsico}, abstract = {

On August 21, 2017, there will be a total solar eclipse over the continental United States (US). Solar eclipses offer a way to study the dependence of the ionospheric density and morphology on incident solar radiation. There are significant differences between the conditions during a solar eclipse and the conditions normally experienced at sunset and sunrise, including the east-west motion of the eclipse terminator, the speed of the transition, and the continued visibility of the corona throughout the eclipse interval. Taken together, these factors imply that unique ionospheric responses may be witnessed during eclipses including variations in the density and altitude of the F2 peak. In order to study these changes, we will establish four temporary field stations along the path of totality to track the maximum usable frequency (MUF) across the US over the course of the eclipse. Each field station shall consist of a commercial off the shelf (COTS) software defined radio (SDR) transceiver, a laptop computer running automatic link establishment (ALE) software, a Global Positioning System (GPS) receiver for timing, and a COTS antenna. Custom ALE software will automate the sites{\textquoteright} operation during the experiment to determine the MUF. As a validation test prior to the eclipse, we established three sites along the east coast to confirm that the SDRs are capable of inferring ionospheric conditions. The preliminary results characterize the effects of the sunrise/sunset terminator on our system{\textquoteright}s measurements as well as the change in foF2 during different seasons and under different geomagnetic conditions.

}, url = {http://hamsci.org/sites/default/files/publications/2016_AGU_Moses.pdf}, author = {Magdalina L. Moses and S. Dixit and Gregory D. Earle and Nathaniel A. Frissell and Lee Kordella and Xiaoyu Han and Charudatta Chitale} } @conference {143, title = {HamSCI: The Ham Radio Science Citizen Investigation}, booktitle = {Fall 2016 American Geophysical Union}, year = {2016}, month = {12/2016}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco}, abstract = {

Amateur (or {\textquotedblleft}ham{\textquotedblright}) radio operators are individuals with a non-pecuniary interest in radio technology, engineering, communications, science, and public service. They are licensed by their national governments to transmit on\ amateur radio frequencies. In many jurisdictions, there is no age requirement for a ham radio license, and operators from diverse backgrounds participate. There are more than 740,000 hams in the US, and over 3 million (estimated)\ worldwide. Many amateur communications are conducted using transionospheric links and thus affected by space weather and ionospheric processes. Recent technological advances have enabled the development of\ automated ham radio observation networks (e.g. the Reverse Beacon Network,\ www.reversebeacon.net) and specialized operating modes for the study of weak-signal propagation. The data from these networks have been\ shown to be useful for the study of ionospheric processes. In order to connect professional researchers with the volunteer-based ham radio community, HamSCI (Ham Radio Science Citizen Investigation,\ www.hamsci.org) has\ been established. HamSCI is a platform for publicizing and promoting projects that are consistent with the following objectives: (1) Advance scientific research and understanding through amateur radio activities. (2) Encourage\ the development of new technologies to support this research. (3) Provide educational opportunities for the amateur community and the general public. HamSCI researchers are working with the American Radio Relay League\ (ARRL,\ www.arrl.org) to publicize these objectives and recruit interested hams. The ARRL is the US national organization for amateur radio with a membership of over 170,000 and a monthly magazine, QST. HamSCI is\ currently preparing to support ionospheric research connected to the 21 Aug 2017 Total Solar Eclipse by expanding coverage of the Reverse Beacon Network and organizing a large-scale ham radio operating event ({\textquotedblleft}QSO\ Party{\textquotedblright}) to generate data during the eclipse.

}, url = {http://hamsci.org/sites/default/files/publications/2016_AGU_Frissell_HamSCI.pdf}, author = {Nathaniel A. Frissell and Magdalina L. Moses and Gregory Earle and Robert W. McGwier and Ethan S. Miller and Steven R. Kaeppler and H. Ward Silver and Felipe Ceglia and David Pascoe and Nicholas Sinanis and Peter Smith and Richard Williams and Alex Shovkoplyas and Andrew J. Gerrard} } @conference {54, title = {Dayside Ionospheric Response to X-Class Solar Flare Events Observed with Reverse Beacon Network High Frequency Communication Links}, booktitle = {Virginia Tech REU Symposium - Poster Presentation}, year = {2015}, month = {07/2015}, publisher = {Virginia Tech REU Program}, organization = {Virginia Tech REU Program}, address = {Blacksburg, VA}, url = {http://hamsci.org/sites/default/files/article/file/Csquibb_REU2015_Poster.pdf}, author = {Carson O. Squibb and Nathaniel A. Frissell and J. Michael Ruohoniemi and Joseph B. H. Baker and Robyn Fiori and Magdalina L. Moses} } @booklet {668, title = {HamSCI and the 2017 Total Solar Eclipse (HamSCI Founding Document)}, year = {2015}, url = {https://hamsci.org/publications/hamsci-and-2017-total-solar-eclipse-hamsci-founding-document}, author = {Nathaniel A. Frissell and Magdalina L. Moses and Gregory D. Earle and Robert McGwier and H. Ward Silver} }