@proceedings {835, title = {Comparative Analysis of Medium Scale Travelling Ionospheric Disturbances: Grape PSWS vs. SuperDARN }, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are periodic fluctuations in ionospheric electron density associated with atmospheric gravity waves. They are characterized by wavelengths of 50-500 kilometers and periods of 15-60 minutes. This study presents initial findings from a comparative analysis of MSTID observations sourced from two distinct systems: the Super Dual Auroral Radar Network (SuperDARN) and the Grape Personal Space Weather Station (PSWS). The Grape PSWS, developed by the Ham Radio Science Citizen Investigation (HamSCI), is a small ground-based remote sensing device aimed at monitoring space weather parameters, including MSTIDs. It achieves this by monitoring a 10 MHz transmission from WWV, a National Institute of Standards and Technology (NIST) time standard station located near Fort Collins, Colorado, USA. In contrast, SuperDARN comprises a global network of high-frequency radars that offer extensive coverage of ionospheric plasma motion. This comparative investigation focuses on aligning MSTID observations obtained from Grape PSWS data with SuperDARN radar data. By investigating datasets from both platforms, these findings serve as initial results for an ongoing investigation of MSTIDs, laying the groundwork for a comprehensive understanding of their dynamics and impacts on ionospheric variability and space weather.

}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Bharat Kunduri and J. Michael Ruohoniemi and Joseph Baker and William Liles and John Gibbons and Kristina Collins and David Kazdan and Rachel Boedicker} } @proceedings {836, title = {Possible Drivers of Large Scale Traveling Ionospheric Disturbances by Analysis of Aggregated Ham Radio Contacts}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasiperiodic electron density perturbations of the F region ionosphere that have periods of 30 min to over 180 min, wavelengths of over 1000 km, and velocities of 150 to 1000 m/s. These are seen as long slow oscillations in the bottom side of the ionosphere in data from ham radio contacts at 20 meters wavelength on roughly a third of the days in a year. They might be triggered by electromagnetic forces from above, and/or by mechanical pressures from below. The explosion of the Tonga volcano on January 15, 2022 revealed that such a LSTID could be triggered by a violent updraft from the Earth{\textquoteright}s surface into the stratosphere and then detected in the ionosphere over the United States nine hours later. We consider other possible drivers such as the auroral electrojet, the polar vortex, thunderstorms, zonal wind speeds, gravity wave variances, and their time derivatives in 2017.

}, author = {Diego Sanchez and Mary Lou West and Nathaniel A. Frissell and Gareth W. Perry and William D. Engelke and Robert B. Gerzoff and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker and V. Lynn Harvey} } @proceedings {873, title = {Reexamining the Characteristics of Flare-Driven Doppler Flash using multipoint HF Observations}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Sudden enhancement in the ionospheric electron density following a solar flare causes disruption in the transionospheric high frequency (HF: 3-30 MHz) communications, commonly referred to as Shortwave Fadeout (SWF). This disruption is also recorded as a sudden enhancement in Doppler frequency in the received HF signal, referred to as Doppler Flash. This phenomenon was recorded and reported by the SuperDARN HF radar network. Previous investigations have suggested that among various phases of flare-driven SWFs observed by HF radars Doppler Flash is the first to observe, and there are no significant trends in Doppler Flash with location, operating frequency, or flare intensity. Recent development showed that Doppler observations from the distributed HamSCI Personal Space Weather Station (PSWS) can provide insight into the physics behind changes in phase path length of the trans ionospheric radio signals. Unlike SuperDARN, HamSCI PSWS can record the full phase of the Doppler Flash, provide an edge to revisit the characterization study and compare with existing dataset. In this study, we demonstrate how HamSCI observations can be used to infer flare-driven changes in ionospheric properties. We found: (1) HamSCI PSWS has higher dynamic range than SuperDARN during flare making it less susceptible to SWF, thus it can record the full Doppler Flash; (2) data from HamSCI PSWS shows a strong function trend with flare strength, operating frequency, and location on the Earth; and (3) HF rays traveling longer distances experienced statistically higher Doppler. We understand that, while instantaneous Doppler realized by the HF signal is proportional to the rate of change in solar irradiance, the total Doppler realized is proportional to the total flare-deposited energy in the ionosphere.

}, author = {Shibaji Chakraborty and Kristina V. Collins and Nathaniel A. Frissell and J. Michael Ruohoniemi and Joseph B. H. Baker} } @proceedings {764, title = {Medium Scale Traveling Ionospheric Disturbances and their Connection to the Lower and Middle Atmosphere}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, author = {Nathaniel A. Frissell and Francis Tholley and V. Lynn Harvey and Sophie R. Phillips and Katrina Bossert and Sevag Derghazarian and Larisa Goncharenko and Richard Collins and Mary Lou West and Diego F. Sanchez and Gareth W. Perry and Robert B. Gerzoff and Philip J. Erickson and William D. Engelke and Nicholas Callahan and Lucas Underbakke and Travis Atkison and J. Michael Ruohoniemi and Joseph B. H. Baker} } @proceedings {700, title = {Viability of Nowcasting Solar Flare-Driven Radio-Blackouts Using SuperDARN HF Radars}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

The first space weather impact of a solar flare is radio blackout across the dayside of the Earth. At a delay of just 8 minutes, the arrival of enhanced X-ray and EUV radiation leads to a dramatic increase in ionization density in the lower ionosphere. Operation of HF systems are often completely suppressed due to anomalous absorption, while many RF systems suffer some degradation. While the onset of blackout is very rapid (~1-minute), the recovery takes tens of minutes to hours. Furthermore, severe solar flares can disrupt emergency HF communications that support humanitarian aid services, including amateur radio and satellite communication systems. Our current monitoring capability is based on modeling the ionospheric impacts based on GOES satellite observations of solar fluxes. We present a technique to characterize radio blackout following solar flares using HF radar. The future extension of this work is to develop an now-casting system to identify and monitor radio blackouts using HF radars currently deployed to support space science research. Networks of such radars operate continuously in the northern and southern hemisphere as part of the SuperDARN collaboration. Recent studies have shown that radio blackout (also known as shortwave fadeout) is easily detected and characterized using radar observations. We will combine real-time observations from the North American suite of SuperDARN radars to specify the occurrence of radio blackouts in near real-time.

}, author = {Shibaji Chakraborty and J. Michael Ruohoniemi and Joseph B. H. Baker} } @proceedings {628, title = {Climatology of Large Scale Traveling Ionospheric Disturbances Observed by HamSCI Amateur Radio with Connections to Geospace and Neutral Atmospheric Sources}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are propagating variations of F-region ionospheric electron densities that can affect the range and quality of High Frequency (HF, 3-30 MHz) radio communications. TIDs create concavities in the ionospheric electron density profile that move horizontally with the TID and cause skip-distance focusing effects for high frequency radio signals propagating through the ionosphere. TIDs are of great interest scientifically because they are often associated with neutral Atmospheric Gravity Waves (AGWs) and can be used to advance understanding of atmosphere-ionosphere coupling. Large scale TIDs (LSTIDs) have periods of 30-180 min, horizontal phase velocities of 100 - 250 m/s, and horizontal wavelengths of over 1000 km and are believed to be generated either by geomagnetic activity or lower atmospheric sources. The signature of this phenomena is manifest as quasi-periodic variations in contact ranges in HF amateur radio communication reports recorded by automated monitoring systems such as the Weak Signal Propagation Reporting Network (WSPRNet) and the Reverse Beacon Network (RBN). Current amateur radio observations are only able to detect LSTIDs. In this study, we present a climatology of LSTID activity using RBN and WSPRNet observations on the 1.8, 3.5, 7, 14, 21, and 28 MHz amateur radio bands from 2017. Results will be organized as a function observation frequency, longitudinal sector (North America and Europe), season, and geomagnetic activity level. Connections to geospace are explored via SYM-H and Auroral Electrojet indexes, while neutral atmospheric sources are explored using NASA{\textquoteright}s Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2).

}, author = {Diego S. Sanchez and Nathaniel A. Frissell and Gareth W. Perry and V. Lynn Harvey and William D. Engelke and Anthea Coster and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker} } @proceedings {618, title = {Viability of Nowcasting Solar Flare-Driven Radio-Blackouts Using SuperDARN HF Radars}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

The first space weather impact of a solar flare is radio blackout across the dayside of the Earth. At a delay of just 8 minutes, the arrival of enhanced X-ray and EUV radiation leads to a dramatic increase in ionization density in the lower ionosphere. Operation of HF systems are often completely suppressed due to anomalous absorption, while many RF systems suffer some degradation. While the onset of blackout is very rapid (1-minute), the recovery takes tens of minutes to hours. Furthermore, severe solar flares can disrupt emergency HF communications that support humanitarian aid services, including amateur radio and satellite communication systems. Our current monitoring capability is based on modeling the ionospheric impacts based on GOES satellite observations of solar fluxes. We present a technique to characterize radio blackout following solar flares using HF radar. The future extension of this work is to develop an now-casting system to identify and monitor radio blackouts using HF radars currently deployed to support space science research. Networks of such radars operate continuously in the northern and southern hemisphere as part of the SuperDARN collaboration. Recent studies have shown that radio blackout (also known as shortwave fadeout) is easily detected and characterized using radar observations. We will combine real-time observations from the North American suite of SuperDARN radars to specify the occurrence of radio blackouts in near real-time.

}, author = {Shibaji Chakraborty and J. Michael Ruohoniemi and Joseph B. H. Baker} } @conference {538, title = {Antarctic SuperDARN Observations of Medium Scale Traveling Ionospheric Disturbances}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are quasi-periodic variations of the F-region ionosphere with periods of 15 to 60 minutes and horizontal wavelengths of a few hundred kilometers. MSTIDs are typically associated with atmospheric gravity waves (AGWs). Statistical studies of MSTIDs using Super Dual Auroral Radar Network (SuperDARN) radars in the Northern Hemisphere have shown strong correlation with Polar Vortex activity, while a study of MSTIDs using the Antarctic Falkland Islands SuperDARN radar showed populations of MSTIDs with signatures suggestive of both solar wind-magnetosphere coupling sources and lower neutral atmospheric winds sources. The sources of the MSTIDs are still not well understood, and there are limited studies of MSTIDs using SuperDARN radars in the Southern Hemisphere. We present initial results of MSTID observations of using Antarctic SuperDARN radars, including the radar at McMurdo Station.

}, author = {Francis Tholley and Nathaniel A. Frissell and Joseph B. H. Baker and J. Michael Ruohoniemi and William Bristow} } @proceedings {471, title = {INVITED SCIENTIST TUTORIAL: Midlatitude Ionospheric Physics}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {
Abstract:\ The midlatitude portion of the ionosphere is located roughly between 30{\textdegree} and 60{\textdegree} magnetic latitude, where the vast majority of radio amateurs operate. The midlatitude ionosphere has historically been considered less {\textquoteleft}active{\textquoteright} than the high-latitude auroral regions or the low-latitude equatorial zone and has received less scientific attention. However, the bulk of humanity lives at these latitudes and major vulnerabilities to space weather disturbance are found there. Some will be well-known to radio amateurs operating HF communications links. Increased interest in the midlatitude ionosphere has spurred the deployment of new observational facilities such as the midlatitude component of SuperDARN and the Personal Space Weather Station. In this tutorial, Dr. Ruohoniemi will present a review of the physics of the midlatitude ionosphere, discuss recent advancements and open questions at the frontiers of research, and consider means by which the amateur radio community can contribute to advancing scientific understanding and technical capabilities.
Bio:\ Dr. J. Michael Ruohoniemi is a professor of electrical engineering at Virginia Tech and Principal Investigator of the\ Virginia Tech Super Dual Auroral Radar Network (SuperDARN) Laboratory. Dr. Ruohoniemi earned his B.S. from the University of King{\textquoteright}s College and Dalhousie University, Nova Scotia in 1981 and his Ph.D. from the University of Western Ontario in 1986. After graduation he joined the team at the Johns Hopkins University Applied Physics Laboratory that developed HF radar into the SuperDARN concept to study the auroral (high-latitude) ionosphere. As a faculty member at Virginia Tech, he led a consortium of universities in building a chain of SuperDARN radars at midlatitudes across the U.S. His scientific publications now have over 9,700 citations. Today, 12 of the more than 30 radars in the SuperDARN network make continuous observations of the midlatitude ionosphere in both hemispheres, and these observations have been instrumental in advancing midlatitude ionospheric science in numerous studies.
}, author = {J. Michael Ruohoniemi} } @conference {537, title = {Observing Large Scale Traveling Ionospheric Disturbances using HamSCI Amateur Radio: Climatology with Connections to Geospace and Neutral Atmospheric Sources}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Large Scale Traveling lonospheric Disturbances (TIDs) are propagating variations in ionospheric electron densities that affect radio communications. LSTIDs create concavities in the ionospheric electron density profile that move horizontally with the LSTID and cause skip-distance focusing effects for high frequency (HF, 3-30 MHz) radio signals propagating through the ionosphere. This phenomena manifests as quasi-periodic variations in contact ranges in HF amateur radio communications recorded by automated monitoring systems such as RBN and WSPRNet. In this study, members of the Ham Radio Science Citizen Investigation (HamSCI) present a climatology of LSTID activity as well as using RBN and WSPRNet observations on the 1.8, 3.5, 7, 14, 21, and 28 MHz amateur radio bands from 2017. Results will be organized as a function observation frequency, longitudinal sector, season, and geomagnetic activity level. Connections to neutral atmospheric sources are also explored.

}, author = {Diego F. Sanchez and Nathaniel A. Frissell and Gareth W. Perry and William D. Engelke and Anthea Coster and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker} } @proceedings {465, title = {Observing Traveling Ionospheric Disturbances using HamSCI Amateur Radio: Validation and Climatology}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

Traveling lonospheric Disturbances (TIDs) are propagating variations in ionospheric electron densities that affect radio communications and can help with understanding energy transport throughout the coupled magnetosphere-ionosphere-neutral atmosphere system. Large scale TIDs (LSTIDs) have periods T\ \approx30-180\ min, horizontal phase velocities v_H\approx‍100-‍250 m/s, and horizontal wavelengths \lambda_H\>1000 km and are believed to be generated either by geomagnetic activity or lower atmospheric sources. TIDs create concavities in the ionospheric electron density profile that move horizontally with the TID and cause skip-distance focusing effects for high frequency (HF, 3-30 MHz) radio signals propagating through the ionosphere. The signature of this phenomena is manifest as quasi-periodic variations in contact ranges in HF amateur radio communication reports recorded by automated monitoring systems such as the Weak Signal Propagation Reporting Network (WSPRNet) and the Reverse Beacon Network (RBN). First in this study, members of the Ham Radio Science Citizen Investigation (HamSCI) present a case study showing consistency in LSTID signatures in RBN and WSPRNet are also present in Super Dual Auroral Radar Network (SuperDARN), Global Navigation Satellite System (GNSS), and ionosonde measurements. Then, we present a climatology of LSTID activity as well as\  using RBN and WSPRNet observations on the 1.8, 3.5, 7, 14, 21, and 28 MHz amateur radio bands from 2017. Results will be organized as a function observation frequency, longitudinal sector (North America and Europe), season, and geomagnetic activity level.

}, author = {Diego F. Sanchez and Nathaniel A. Frissell and Gareth W. Perry and William D. Engelke and Anthea Coster and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker} } @conference {542, title = {Sources of Large Scale Traveling Ionospheric Disturbances Observed using HamSCI Amateur Radio, SuperDARN, and GNSS TEC}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasi-periodic variations in F region electron density with horizontal wavelengths \> 1000 km and periods between 30 to 180 min. On 3 November 2017, LSTID signatures were detected in simultaneously over the continental United States in observations made by global High Frequency (HF) amateur (ham) radio observing networks and the Blackstone (BKS) SuperDARN radar. The amateur radio LSTIDs were observed on the 7 and 14 MHz amateur radio bands as changes in average propagation path length with time, while the LSTIDs were observed by SuperDARN as oscillations of average scatter range. LSTID period lengthened from T ~ 1.5 hr at 12 UT to T ~ 2.25 hr by 21 UT. The amateur radio and BKS SuperDARN radar observations corresponded with Global Navigation Satellite System differential Total Electron Content (GNSS dTEC) measurements. dTEC was used to estimate LSTID parameters: horizontal wavelength 1136 km, phase velocity 1280 km/hr, period 53 min, and propagation azimuth 167{\textdegree}. The LSTID signatures were observed throughout the day following ~400 to 800 nT surges in the Auroral Electrojet (AE) index. As a contrast, 16 May 2017 was identified as a period with significant amateur radio coverage but no LSTID signatures in spite of similar geomagnetic conditions and AE activity as the 3 November event. We hypothesize that atmospheric gravity wave (AGW) sources triggered by auroral electrojet intensifications and associated Joule heating are the source of the LSTIDs, and that seasonal neutral atmospheric conditions may play a role in preventing AGW propagation in May but not in November.

}, author = {Nathaniel A. Frissell and Diego F. Sanchez and Gareth W. Perry and Dev Joshi and William D. Engelke and Evan G. Thomas and Anthea Coster and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker} } @proceedings {469, title = {Viability of nowcasting solar flare-driven radio-blackouts using SuperDARN HF radars}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, abstract = {

The first space weather impact of a solar flare is radio blackout across the dayside of the Earth. At a delay of just 8 minutes, the arrival of enhanced X-ray and EUV radiation leads to a dramatic increase in ionization density in the lower ionosphere. Operation of HF systems are often completely suppressed due to anomalous absorption, while many RF systems suffer some degradation. While the onset of blackout is very rapid (~ minutes), the recovery takes tens of minutes to hours. Furthermore, severe solar flares can disrupt emergency HF communications that support humanitarian aid services, including amateur radio and satellite communication systems. Our current monitoring capability is based on modeling the ionospheric impacts based on GOES satellite observations of solar fluxes. We present a technique to characterize radio blackout following solar flares using HF radar. The future extension of this work is to develop an early warning system to identify \& monitor radio blackouts using HF radars currently deployed to support space science research. Networks of such radars operate continuously in the northern and southern hemisphere as part of the SuperDARN collaboration. Recent studies have shown that radio blackout (also known as shortwave fadeout) is easily detected and characterized using radar observations. We will combine real-time observations from the North American suite of SuperDARN radars to specify the occurrence of radio blackouts in near real-time. In this study, however, we present investigation and recognition techniques of shortwave fadeouts in SuperDARN HF radar.

}, author = {Shibaji Chakraborty and J. Michael Ruohoniemi and Joseph B. H. Baker} } @conference {361, title = {Large Scale Traveling Ionospheric Disturbances Observed using HamSCI Amateur Radio, SuperDARN, and GNSS TEC}, booktitle = {American Geophysical Union Fall Meeting}, year = {2019}, month = {12/2019}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco, CA}, abstract = {

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasi-periodic variations in F region electron density with horizontal wavelengths \> 1000 km and periods between 30 to 180 min. On 3 November 2017, LSTID signatures were detected in observations made by Reverse Beacon Network (RBN) and the Weak Signal Propagation Reporting Network (WSPRNet) for the first time. The RBN and WSPRNet are two large-scale High Frequency (HF, 3-30 MHz) amateur (ham) radio observing networks that provide data to the Ham Radio Science Citizen Investigation (HamSCI). The LSTIDs were observed on the 7 and 14 MHz amateur radio bands, and are detected by observing changes in average propagation path length with time. LSTID period lengthened from T ~ 1.5 hr at 12 UT to T ~ 2.25 hr by 21 UT. Simultaneous LSTID signatures were present in ham radio observations over the continental United States, the Atlantic Ocean, and Europe. LSTIDs observed with amateur radio were consistent with LSTIDs observed by the Blackstone SuperDARN HF radar and in differential GNSS Total Electron Content (TEC) measurements. GNSS TEC maps were used to estimate LSTID parameters: horizontal wavelength 1100 km, phase velocity 950 km/hr, period 70 min, and propagation azimuth 135{\textdegree}. The LSTID signatures were observed throughout the day following ~800 nT surges in the Auroral Electrojet (AE) index at 00 and 12 UT. We will discuss potential generation hypotheses for the observed LSTIDs, including atmospheric gravity wave (AGW) sources triggered by auroral electrojet intensifications and associated Joule heating.

}, url = {https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/581488}, author = {Nathaniel A. Frissell and Diego F. Sanchez and Evan Markowitz and Gareth W. Perry and William D. Engelke and Anthea Coster and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker} } @conference {54, title = {Dayside Ionospheric Response to X-Class Solar Flare Events Observed with Reverse Beacon Network High Frequency Communication Links}, booktitle = {Virginia Tech REU Symposium - Poster Presentation}, year = {2015}, month = {07/2015}, publisher = {Virginia Tech REU Program}, organization = {Virginia Tech REU Program}, address = {Blacksburg, VA}, url = {http://hamsci.org/sites/default/files/article/file/Csquibb_REU2015_Poster.pdf}, author = {Carson O. Squibb and Nathaniel A. Frissell and J. Michael Ruohoniemi and Joseph B. H. Baker and Robyn Fiori and Magdalina L. Moses} }