@conference {165, title = {The Solar Eclipse QSO Party: Ionospheric Sounding Using Ham Radio QSOs}, booktitle = {Dayton Hamvention}, year = {2017}, address = {Xenia, OH}, abstract = {

The 2017 Total Solar Eclipse is expected to temporarily induce profound changes on ionospheric structure, dynamics, and radio propagation. The ARRL and HamSCI are sponsoring a Solar Eclipse QSO Party (SEQP) that will be used to generate to assist in imaging ionospheric changes before, during, and after the eclipse. Data will be collected through participant submitted logs and the use of automated tools such as the Reverse Beacon Network (RBN), PSKReporter, and WSPRNet. SEQP rules and a prediction of results will be presented.

}, author = {Nathaniel A. Frissell and Joshua D. Katz and Andrew J. Gerrard and Magdalina Moses and Gregory D. Earle and Robert W. McGwier and Ethan S. Miller and Stephen Kaeppler and H. W. Silver} } @conference {51, title = {e-POP Radio Science Using Amateur Radio Transmissions}, booktitle = {Fall AGU - Poster Presentation}, year = {2015}, month = {12/2015}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco, CA}, abstract = {

A major component of the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) mission is to utilize artificially generated radio emissions to study High Frequency (HF) radio wave propagation in the ionosphere. In the North American and European sectors, communications between amateur radio operators are a persistent and abundant source source of HF transmissions. We present the results of HF radio wave propagation experiments using amateur radio transmissions as an HF source for e-POP RRI. We detail how a distributed and autonomously operated amateur radio network can be leveraged to study HF radio wave propagation as well as the structuring and dynamics of the ionosphere over a large geographic region. In one case, the sudden disappearance of nearly two-dozen amateur radio HF sources located in the midwestern United States was used to detect a enhancement in foF2 in that same region. We compare our results to those from other more conventional radio instruments and models of the ionosphere to demonstrate the scientific merit of incorporating amateur radio networks for radio science at HF.

}, author = {Nathaniel A. Frissell and Gareth Perry and Ethan S. Miller and Alex Shovkoplyas and Magdalina Moses and H. James and Andrew Yau} } @conference {52, title = {Experiment Design to Assess Ionospheric Perturbations During the 2017 Total Solar Eclipse}, booktitle = {Fall AGU - Poster Presentation}, year = {2015}, month = {12/2015}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco, CA}, abstract = {

On August 21, 2017, there will be a total solar eclipse over the United States traveling from Oregon to South Carolina. Solar eclipses offer a way to study the dependence of the ionospheric density and morphology on incident solar radiation. There are significant differences between the conditions during a solar eclipse and the conditions normally experienced at sunset and sunrise, including the east-west motion of the eclipse terminator, the speed of the transition, and the continued visibility of the corona throughout the eclipse interval. Taken together, these factors imply that unique ionospheric responses may be witnessed during eclipses. These include changes in the ionospheric electric fields, changes in the Total Electron Content (TEC) along paths through the eclipsed region, and variations in the density and altitude of the F2 peak. Several studies over the past century investigated these effects; however, some of the results from these studies are contradictory. These contradictions and the studies{\textquoteright} limited spatial resolution leave many fundamental questions unanswered. The advent of several mid-latitude Global Positioning System (GPS) and radar networks in the past few decades, such as the Continuously Operating Reference Station (CORS) system and the Super Dual Auroral Radar Network (SuperDARN) radar system, have enabled ionospheric observations with hitherto unprecedented spatial resolution. Also, the establishment of several nationwide amateur radio reporting systems, such as the Reverse Beacon Network (RBN) that monitors radio wave propagation on the high frequency (HF) bands, offers the potential for evaluating changes in ionospheric conditions with unprecedented spatial resolution. We propose to study the effects of the total solar eclipse on the ionosphere using a combination of GPS receivers, the SuperDARN radar system, HF band amateur radio, and plasma modeling. The overall objectives of this study are to characterize the changes in F-region plasma morphology during the eclipse over a larger spatial domain than any previous eclipse experiment. In addition, the amateur radio component of our study offers a unique opportunity to further engage the amateur radio community nationwide in a scientific study.

}, author = {Magdalina Moses and Gregory Earle and Nathaniel Frissell and Stephen Kaeppler} }