@conference {537, title = {Observing Large Scale Traveling Ionospheric Disturbances using HamSCI Amateur Radio: Climatology with Connections to Geospace and Neutral Atmospheric Sources}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Large Scale Traveling lonospheric Disturbances (TIDs) are propagating variations in ionospheric electron densities that affect radio communications. LSTIDs create concavities in the ionospheric electron density profile that move horizontally with the LSTID and cause skip-distance focusing effects for high frequency (HF, 3-30 MHz) radio signals propagating through the ionosphere. This phenomena manifests as quasi-periodic variations in contact ranges in HF amateur radio communications recorded by automated monitoring systems such as RBN and WSPRNet. In this study, members of the Ham Radio Science Citizen Investigation (HamSCI) present a climatology of LSTID activity as well as using RBN and WSPRNet observations on the 1.8, 3.5, 7, 14, 21, and 28 MHz amateur radio bands from 2017. Results will be organized as a function observation frequency, longitudinal sector, season, and geomagnetic activity level. Connections to neutral atmospheric sources are also explored.

}, author = {Diego F. Sanchez and Nathaniel A. Frissell and Gareth W. Perry and William D. Engelke and Anthea Coster and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker} }