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Atmosphere-ionosphere-magnetosphere system
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Strongly driven by solar and
magnetospheric processes

Primary example: strong geomagnetic
storm

Studies of geomagnetic storms enable
understanding of energy transfer from
Sun to the near-Earth space

Studies of lower atmospheric
phenomena enable understanding of
energy transfer from the
troposphere/stratosphere upwards



What we know well: average ionospheric behavior
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* Strong correlation with solar activity

e Strong diurnal variation

e Strong seasonal variation

* Peaks of equatorial ionization anomaly at +/-15MLAT

 Monthly mean behavior is well described by IRl model
(International Reference lonosphere)

* |RI model still performs better than first-principle model
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Geomagnetic Storms

January 10
01:49:50
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Magnetospheric Response

Atmospheric Response



What we don’t know very well:

ionospheric disturbances during geomagnetic storm
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Thermospheric O/N2 behavior: good data/model agreement prior to the
storm of 20 Nov 2003; model overestimates increase in O/N2 at low
latitudes and underestimates recovery phaze

Geodetic Latitude
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Storm Enhanced Density plume: narrow
region of large increase in TEC



Empirical model of ionospheric disturbances

STORM Time Empirical lonospheric Correction Model
F region criticel frequency (foF2) scoling foctor
(this volue represents the adjustment needed to the climotologicol mean due to geomognetic activity)

corrected fof2 = "scoling factor” = foF2(mean)

Geomognelic oclivity hos been oclive, therefore substontiol jonospheric odjusiments ore necessory in some sectors
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Figure 6. Output of the STORM model for the Bastille Day storm (July 15 and 16, 2000). The full line represents
the input of the model (integral ofa,), and the symbols the different levels of the model output. The color-coded page
can be seen at http:/secnoaa.gov/storm/,

Araujo-Pradere et al., 2002

NOAA/SEC Boulder, CO USA

Empirical model of ionospheric
correction is based on 75 ionospheric
stations and 43 geomagnetic storms
Output provides correction to quiet
time foF2

This model is included in IRl model
(International Reference lonosphere)
Improves predicted foF2 in equinox and
summer; performs worse in winter.

Just imagine how understanding
could be advanced with data
from 500 citizen scientists...or
5000...




Other effort: real-time IR

IRTAM v0.2A 2016.06.24 21:30:00 UT IRTAM v0.2A 2016.06.24 21:30:00 UT IRTAM v0.2A
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Yet another model: GIM TEC

b) Positive Phase 20061215 2
4 '
5 Obssrvations 0 Model 90 IGsz MOdI * Empirical model based on GIM TEC 2-

hour maps (1998-2015)
* Forecast for 1,2,3,5,8 and 10 days
* Geomagnetic inputs are not
forecasted
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STORM Time Empirical lonospheric Correction Model

F regicn critical frequency (foF2) scaling factor
(this value represents the adjustment needed to the climotological mean due to gecmagnetic activity)

corrected foF2 = ''scaling factor" * foF2{mean)

Geomagnetic activity has been nominal therefore minor or no ichospheric adjustments are necessary
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Legend and Color Scale
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Usage Impacts Detalls History Data

NOAA Storm Time Empirical
lonospheric Correction

Is expected to be of benefit to HF users

No prediction even for several hours in advance
Expected variations are ~¥10% from monthly mean

Any feedback on the model from ham radio operators?

1. What drives ionosopheric weather
during geomagnetically quiet time?

2. 95% of the time geomagnetic
activity is < Kp=4



Last decade+: impact of tropospheric weather
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lonospheric electron density can strongly
vary on a day-by-day basis

Effects of waves generated in the lower
atmosphere

Planetary waves — 10-16 day, 5-6 day,
3-4 days Kelvin waves, 2-day

Tidal waves — 24-hrs, 12-hrs, 8-hrs
Gravity waves — variations with periods
~5mins — 6-8 hrs

Generated in the lower atmosphere
and propagate upward



Waves carry momentum and energy to ionosphere
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What we know about waves

* There are many, many sources of waves:

* Planetary waves — land/sea temperature differences, air flow over the mountain
ranges

» Tidal waves — heating of water vapor in the troposphere (clouds); heating of
ozone in the stratosphere (~¥30-40 km)

* Gravity waves — weather systems, mountains, tropospheric convection, solar
terminator...but also earthquakes, tsunamis

* Wave propagation strongly depends on the temperature and wind
between the source and upper atmosphere

* Waves interact with each other and create secondary waves

* Varying sources of waves + varying propagation conditions => highly
variable energy flux entering ionosphere from below

It’s a zoo of waves out there!



Arecibo ISR, 18-Jan-2013, NEL

This is what we expect to see
from empirical model....

Hngh frequency cornponent (kHz)
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...and this is what we actually observe... oo ¥
Plasma line experiment, Arecibo ISR. 150

‘ " !ﬁ
f h 1 1 I'l.‘"’I { ‘ T ‘]I .l "II“"‘ ‘:Iy: y‘ I|"'I““-:\x"< yl‘l"‘ :'I“ “ I ’y }nl\'ll’\ | J’ ét " 1%
Image from Juha Vierinen. 100 B g i LA T e - 5 L
Hour (AST)

d.1| f'\




Effects of planetary waves: periodic variations

Period (hours)

Model: WAM

Zonal Wind, wavenumber 2, 110 km, 20°S

10 20 =0 40 20 <1
Day number in March-April

PW modulate E-region tides
(Fuller-Rowell, 2008)

PW often do not propagate to ionospheric
heights; PW signatures are carried by tidal
modes

Non-linear interaction of stationary PW with
migrating tides generates non-migrating
tides

Data: CHAMP, IGS TEC
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~40% variations in Ne at 350 km
(Pedatella and Forbes, 2009)
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Effect of non-migrating diurnal tides:
longitudinal variation in ionospheric parameters

a January—-February b September—October
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Variations in electron density due to non-migrating diurnal tide reach 20-50%



Gravity wave effects in the ionosphere

Data: digisonde, Fortaleza, Brazil
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~8% in TEC, Vadas and Liu, 2009

GW can produce secondary GW and TID
Propagates globally (Gardner and Schunk, 2011)
Nonlinear spectral GW parameterization in GCM
leads to ~200K cooling (Yigit and Medvedev, 2009)

Reviews: Fritts and Alexander, 2003,
Fritts and Lund, 2011 16



Special cases of GW effects:
earthquakes, tsunami, underground nuclear tests

2011 Tohoku-Oki earthquake in Traveling ionospheric disturbance
Japan excited by UNE

lonospheric signal
extracted from the GNSS observation '-..I

L —

Virtual ionospheric { Atmosphere
/ﬁﬁmayer ( PP (xy,2)

_—

GNSS permanent
tracking station

GNSS: Global Navigation Satellite System
IPP: lonospheric Pierce Point

UNE: Underground Nuclear Explosion

Earth surface

* The earthquake created acoustic and Raylegh e Underground nuclear test by North
waves that moved up into the ionosphere Korea in Feb 2013 detected through
within 10 minutes after the quake. GPS satellites signals

* The motion of the tsunami also disturbed the * Independent analysis by South
atmosphere, creating gravity waves that took Korea, UK, USA

30 to 40 minutes to reach the ionosphere. .



T, K, 10hPa

U, m/s, 10hPa

Special type of event: sudden stratospheric warming

Temperature, K, 90N, 10hPa

—e— 2008-2009

| Temperature
ul Oct Jan Apr Jul
Zonal wind, m/s, 60N, 10hPa
L et 2008-2000 .. :

— 30-yéar mean

Jul Oct Jan Apr Jul

Dates, Jul 2008 - Jun 2009

Large disruption of the polar vortex
Largest known meteorological disturbance
Rapid increase in temperature in the high-latitude stratosphere (25K+);

from winter-time to summer-time
Accompanied by a change in the zonal mean wind
Anomalies last for a long time in the stratosphere (2 weeks +)

SSW events occur 1-3 times per winter

-1x108 —5x107 0 5x107
MERRA—2 800 K Streamfunction

“Normal” polar vortex is Disturbed vortex is broken Disturbed vortex is broken
small, round, centered on into 2 cells into 4 cells
the North Pole



Polar vortex and weather impacts
due to stratospheric warming

* Snow cover in
Siberia in October is
linked to US winter
temperature

* |fin doubt, check
your utility bills!

WINTER




Early 2014 North American cold wave

5400 s griogmential hesght (reten)

Ongoing blizzard across Ohio River Valley and Northeastern US as cold
air from Canada moves across warm air from the Gulf of Mexico.
A GOES-13 image on January 2, 2014

Typical polar vortex: Abnormal polar vortex:
Nov 15, 2013 Jan 5, 2014

* Record (or near record) temperatures:
* -37°F in Babbit, Minnesota
* -9°F in Marstons Mills, MA
* 21°F in Huston, 31°F in Tampa, FL
* 49 record lows for the day across the country on January 7
* Heavy snowfall or rainfall + strong winds
* 23.8 inches of snow in Boxford, MA
* S5 billion in damage, 21 fatalities

Ice formations on the Schuylkill River in Philadelphia



https://en.wikipedia.org/wiki/Schuylkill_River
https://en.wikipedia.org/wiki/Philadelphia

..andin I\/Iassachusetts
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...we should have fixed
the snowblower... |

This is me

This is my
mailbox
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Meteorological forecast: 8-10 days in advance

Temperatures 2016/17._____.

=301 — Actual value 10hPo
ccccccc

°C
g

emperature 90°N

—404 — Actual value 30hPa

Temperature 90°N

Temperatures 2016/

""""" N

- Actual value 10hPgo

.....

30 yeor meon

s e, TN

.

''''''''

‘‘‘‘‘‘‘
.........

Temlpercture 90°N
H A4 A

Temperature (90°N-60°N)

b A
A

IN(‘)\sl 16NOV 1DEC 16DEC z‘m"‘t’% 16JAN 1FEB 16FEB IMAR 16MAR 1APR 16APR

University of Berlin

plot from 24.01.2017, produced by FU Berlin

Mon Jan 23 15:37:41 2017

NASA/GSFC

260.0
2520
2440
236.0
2280
2200
2120
204.0
196.0
188.0
180.0

FH120

Paul A Newman & Leslie R Lait (NASA'GSFC)

Forecast on Jan 24, 2017: by Jan 28, North Pole temperature at ~30 km
will increase by 50°C; stratospheric polar vortex strongly disturbed

Continuous global observations of
major parameters since 1979

Well-developed global assimilation
models provide dozens of atmospheric
parameters with high resolution in
time and space

Current status: reliable forecast up to
8-10 days in advance

Tropospheric weather forecast is
improved with increased SSW
predictability [Baldwin et al., 2003;
Sigmond et al., 2013]

Current research effort:
meteorological forecasts 2-3 months
in advance



Things are different for the ionosphere-thermosphere system...

Smaller research community, fewer resources, e Plenty of room for innovation in research
bigger area to study instrumentation

Observations are scarce e Opportunities for major discoveries

Many important parameters are not observed * Leveraging advances in meteorology holds a

at all (temperature and wind profiles) promise of multi-day ionospheric forecast

Data assimilation is in its infancy * Enormous need for more observational data -

24-hr forecast is work in progress plenty of room for citizen science

We are missing major pieces of puzzle

30-50 years behind meteorology
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Variety of effects during SSW: from Arctic stratosphere to
lonosphere over Antarctica

-,
reulaltioN | o e o - = = e & -

Polar vortex

Lower thermosphere warming

Polar mesospher

‘\‘PI ttph re warming

Winter From Pedatella et al., 2018

IMPACTS OF SSW




lonospheric response to January 2009
SSW: plasma motion and GPS TEC

(b) Around SSW days (Jan-2008) 15 UT 21 UT
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Entire daytime low to mid-latitude ionosphere is affected during stratwarming;
Total Electron Content change 50-150% 25

eRelated increase and decrease in electron density



Nighttime effects of SSW: deep depletion in electron density from
~50°S to 40°N in multi-diagnostics study

..decrease in Nmf2 in the Southern 12

TEC data/model ratio, -75LON, 16-Jan-2013

Hemisphere midlle latitude...
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downward plasma drift at NH middle
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..decrease in Ne and large downward

LAT plasma drift at subtropical latitude..

» SSWs affect the nighttime electron density, decreasing it by a factor of 2-4 in a large range of latitudes — 50°S to ~40°N
* These effects are likely to be related to changes in thermospheric zonal wind

* Effects of tidal dynamics on electric field are understood better than on thermospheric wind

Goncharenko et al., 2018,
JGR-Space physics

* Likely related to lunar tide; lunar tides are amplified during SSW, but significant throughout Nov-Mar



Observational evidence: MSTIDs are weaker after polar
VO rtex Wea ken | ng X - 40 FRISSELL ET AL.. MIDLATITUDE MSTIDS

01 Nov 2012 - 01 May 2013
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Yet another piece: SSW disturbances
in the ionosphere over Antarctica

Before SSW During SSW

* Variations in total electron
- 3 Qe 15-Jan-2012 $> e 16-Jan-2013
content fO”OW famlllar ) 04:00 UT 04:00 UT
semidiurnal pattern |

* Independent observations
from ionosondes confirm the
level of disturbances

SSW disturbances are
truly global, from Arctic
stratosphere to
ionosphere over
Antarctica...




Implications for ionospheric research

SSW studies highlights importance of
lower atmospheric drivers in
ionospheric variability

* Need solar EUV + geomagnetic drivers +
meteorological forcing

* Impact will increase in the future
* Mild current & future solar cycles

* 78% decrease in number of storms
* Provides direct pathway to multi-day
ionospheric forecast

e Stratospheric parameters can be predicted
8-10 days in advance
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TEC During SSW

After Goncharenko et al., 2019
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Power of distributed instrumentation

e Data: GNSS TEC, Madrigal database, 1 x 1 degree, 6000+ receivers
* Enables huge variety of studies

e Still major gaps over the oceans, Africa, Russia, China

February 15, 2009

Geodetic median vertical TEC from 2009-02-15 17:00:00 to 2009-02-15 17:20:00
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February 15, 2018

Geodetic median vertical TEC from 2018-02-15 17:00:00 to 2018-02-15 17:20:00
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Improved GNSS TEC coverage enables more detailed studies of ionospheric disturbances
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Concluding remarks

» Space physics is making good progress towards physics based ionospheric
forecasting

 Empirical models are still better than first principles — some physics is missing

* lonospheric system remains strongly undersampled by available research
Instruments

* There is a particularly strong need for observations in the bottomside ionosphere
* HF radiowaves are well suited to address this need
e Operational information from existing HF systems is not publicly available for research
* TIDs from TEC, incoherent scatter radars and ionosondes have different characteristics

* Networks developed by amateur radio operators can provide critical information
with a potential to advance physical understanding of near-Earth space
environment.

Our vision: In years from now, we will look at the weather
forecast on the ground to predict what happens in space.
Can you help us to make it happen?
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Can models simulate

atmospheric processes during
SSW?

e Comparison of four Whole Atmosphere

Models for SSW 2009 case:
* GAIA, Japan,
* HAMMONIA, Germany,
* WAM, USA, NOAA,
* WACCM-X, USA, NCAR

e Variations are similar in the stratosphere
where models are restricted by reanalysis data
(below 0.1hPa level)

* Large disagreements are seen in the
mesosphere-lower thermosphere region
(0.001-1e-06hPa) that is critical for
ionospheric coupling

e Limitations in gravity wave specifications are
thought to be the main reason for these
differences
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The Science Behind the Polar Vortex

The polar vortex is a large area of low pressure and cold air surrounding the Earth’s North and South poles. The term vortex refers to the
counter-clockwise flow of air that helps keep the colder air close to the poles (left globe). Often during winter in the Northern Hemisphere,
the polar vortex will become less stable and expand, sending cold Arctic air southward over the United States with the jet stream (right globe).
The polar vortex is nothing new — in fact, it's thought that the term first appeared in an 1853 issue of E. Littell's Living Age.

mb'e wavy

polar
vortex

strong jet

weak jet
stream

cold dir

contained Sold air

moves

Air pressure and winds
around the Arctic switch between
these two phases (Arctic Oscillation)
and contribute to winter weather patterns.




