SWS HF Receiver Hardware Requirements Overview

Tom McDermott, N5EG

March 22, 2019

Background

- Citizen Science: HF receiver / magnetometer network for Widespread citizen contribution to Ionospheric science.
 - Multi-channel receiver with precision timestamping.
 - 24 hour data collection, retrieval by central site.
 - Very low cost, easy to deploy.
- Key parameters changing as of early March 2019.
 - Impacts not fully analyzed.
- This presentation is refocused:
 - Look at key parameters and general receiver impacts.

Key Parameters

- <u>Range Resolution</u> many things depend on this requirement.
 - System bandwidth, ADC sample clock rate, data storage capacity, receiver data interfaces, clock phase noise.
- Timing Resolution and Accuracy
 - GPS timing accuracy, oscillator smoothing and stability, phase noise.
- HW Issues with lesser impacts:
 - Sensitivity, dynamic range, channel isolation, etc.
- Metadata

Resolution vs. System bandwidth

- Classic Oscilloscope approximation:
 - BW = 0.35 / rise time

- Radar range resolution rule of thumb:
 - Rr = c /2B
 - (c is the speed of light, B is the bandwidth)
 - Just barely resolves an object.

	Rise time	Bandwidth needed	
	3.5 nanoseconds	100 MHz	
	35 nanoseconds	10 MHz	
	350 nanoseconds	1 MHz	

Range resolution	Bandwidth needed
1 meter	50 MHz
10 meters	5 MHz
100 meters	0.5 MHz

Range Resolution Simulation

Phase Noise \rightarrow Jitter

 $B(t) = R(t) e^{i(-\omega t + \varphi(t))}$ $B(t) = R(t) e^{-i\omega t} e^{i\varphi(t)}$

Down conversion with clean oscillator

Phase noise Imprinted onto baseband signal

(down-conversion)

B(t) = baseband signal R(t) = Received signal ωt = perfect receive local NCO oscillator $\varphi(t)$ = phase noise of the local NCO

- Reference clock phase noise is reduced by division to the NCO local oscillator frequency.
 - 20 dB reduction per decade of frequency division.
- Phase noise of the NCO local conversion oscillator is imprinted onto the baseband signal. This causes baseband jitter.
- Simple model: 1/f noise to 1 kHz, flat to 10 kHz, 1/f beyond. ADC clock jitter: separate impact.
- Track out noise below 1 Hz (somehow).

NCO L(f) at 1 Hertz	NCO L(f) at 1 KHz	Jitter, degrees rms	Jitter, seconds rms, to 1 Hz signal	Jitter, seconds rms, to 1 kHz signal
-50 dBC	-110 dBC	0.19 degrees	526 µsec	526 nsec
-60 dBC	-120 dBC	0.06 degrees	166 µsec	166 nsec
-70 dBC	-130 dBC	0.019 degrees	52.6 µsec	52.6 nsec
-80 dBC	-140 dBC	0.006 degrees	16.6 µsec	16.6 nsec

Phase Noise Simulation

1 Hertz signal phase-modulated by phase noise.
Zero-crossing jitter is readily visible during run-time simulation.
Longer observation intervals → more jitter.
Visually matches calculations (as

best that my eyeballs can tell).

Phase noise approximation:

- 1/f noise from 1 Hz to 1 kHz offset.
- Flat from 1 kHz 10 kHz.
- 1/f above 10 kHz.

(Gnuradio spectrum doesn't have log(f) plot available)

Analog to Digital Converter clock jitter

- At 122.88 MHz:
 - 1 psec jitter is 0.04 degrees
 - 10 psec jitter is 0.44 degrees
- Implies model with -60 dbc at 1 Hz declining to -120 dBc at 1 kHz would have
 - .06 / .04 = 1.5 psec jitter.
- \rightarrow 8 dB SNR degradation at 30 MHz.

Figure 2 Jitter Degradation of SNR as a Function of Input Frequency

Range Resolution vs. System Requirements

Range Resolution	System Bandwidth Needed*	Data rate (Nyquist 2x sampling, 16 bit data, 2 channels)	Receiver data interface options	Storage needed for 24 hours	Phase noise @ 1 Hz and 1 kHz**	SATA-3 typical (80-100 MBps) Striped array width.
1 meter	100 MHz	6.4 Gbps / 800 MBps	1 or 2 x 10GE, or PCIe x4 Gen 2, 3	69 TB	-100 dBc / -160 dBc	8-10 drives in parallel (RAID 0) striped array. High performance SAN network more likely.
10 meters	10 MHz	640 Mbps / 80 MBps	1 GE, or PCle x4	6.9 TB	-80 dBc / -140 dBc	1-2 drives in parallel (RAID 0) striped array. SSD might work without RAID 0.
100 meters	1 MHz	64 Mbps / 8 MBps	100 ME	690 GB	- 60 dBc / -120 dBc	1 drive sufficient.
1 km	100 kHz	6.4 Mbps / 800 kBps	10 ME	69 GB	# -60 dBc / -120 dBc	1 drive sufficient.
10 km	10 kHz	640 kbps / 80 kBps	10 ME	6.9 GB	# -60 dBc / -120 dBc	1 drive sufficient.

*ADC may need > 350 Msps for 1 meter Range Resolution depending on detailed science requirements.

** Assuming > 1 kHz edge sharpness of the reflection.

Phase noise impacts ADC SNR more than resolution

Approach to reduce data rate.

- Use (well-known) Digital Down Conversion and decimation
 - Reduce sample rate by orders of magnitude.
 - Significant drawback is reduced system bandwidth
- Example: 8 x 192 ksps RF channels. Back of the envelope analysis:
 - 8 channels x 2 antennas x 192 ksps x 4 bytes (single precision FP) x 2 (I+Q) = 24.6 MB/s (~197 Mbits/sec).
 - Interface: 1 GbE is suitable
 - 24 hours \rightarrow 2.13 TB storage.
 - SATA3: 80~160 MB/s is suitable.

Figure 8. SFDR for the Combination of LTC6400-20 and LTC2208

Background noise level at HF

- Chart shows ITU expected noise in dB over KT_oB
 - 288K thermal noise: roughly 0.9 nanovolt / √Hz across 50 ohms.
- Receiver with 14- or 16- bit ADC and these levels appears to have sufficient sensitivity < 30 MHz.
 - Manmade noise levels have increased (sometimes significantly) since ITU chart was produced.

Timing & Frequency Accuracy

- Timing & Frequency accuracy has two aspects:
 - Self receiver comparison accuracy two cases:
 - Ch1 vs. Ch2 common conversion clock.
 - Ch1 vs. itself over some time interval. Longer-term stability criteria.
 - Separate location receiver comparison accuracy.
 - Time-stamping at each receiver. ± 50 nsec accuracy $\rightarrow \pm 16$ meters uncertainty.
- Issues:
 - Ability to identify a specific sample with respect to GPS (or UTC) time.
 - Frequency accuracy of clock ADC sample clock, NCO clock.
 - ±50 ppb \rightarrow ±0.5 Hz (at 10 MHz) \rightarrow 180 degrees / sec phase drift.
 - Phase noise induced jitter onto the receive signal.

3 Layers of Overhead*

- Wire protocol
 - From Receiver to local host.
 - Communicates framing, packetization, timing mark, etc.
 - Local host may remove or reformat some of this data.
- Meta Data
 - Information about the observation details
 - Which station, time, date, center frequency, etc.
 - Timing data (date, time, which sample is coincident with GPS mark).
 - Needs to be archived with the associated stored data.
- File Format Metadata
 - Haystack: "Digital RF". (HDF5 is the underlying container format)

*Separate layers suggested by Michelle Thompson, W5NYV

Potential Wire Protocol & Metadata

- Metadata (and data format) version number (it *will* change over time).
- Receiver
 - Site ID / information, Channel number, Slice number, Slice frequency.
- GPS Time and date.
 - PPS marking should be prepended to each data block.
 - The header could include a monotonically increasing sequence number to help identify missing blocks (time skip).
- Receive source (antenna or noise source).

HDF5 File Container

- One of several popular data formats used in the research community.
- Open source and free. BSD-style license.
- Designed for long-term data archiving, file contents are selfdescribing.
- HDF5 files can contain several types of metadata:
 - Library metadata
 - Static user metadata
 - Dynamic user metadata
- Substantial encoding computation requirements.
 - My experience: Single-threaded implementation drops occasional frames with real-time @ 4 x 192 ksps IQ floating point on Core I7-3770 processor to SATA HD.
 - Parallel HDF5 version available. I've not tested.
- Needs thought about where the encoding should be done.

Summary

- Range Resolution drives the cost of the hardware.
- Range resolution drives the cost and complexity of storing the intermediate results.
- Range Resolution drives most of the time, frequency, and stability requirements.
- Data Overhead must be carefully thought out.
 - Substantial impact to computational capability.
 - Ability to recreate original data from long-term archive.