@conference {163, title = {Ionospheric Impacts of the 2017 Total Solar Eclipse}, booktitle = {Dayton Hamvention}, year = {2017}, address = {Xenia, OH}, author = {Magalina Moses and Gregory Earle and Sushma Burujupalli and Nathaniel A. Frissell and Lee Kordella and Snehal Dixit and Charudatta Chitale and Xiayou Han} } @conference {143, title = {HamSCI: The Ham Radio Science Citizen Investigation}, booktitle = {Fall 2016 American Geophysical Union}, year = {2016}, month = {12/2016}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco}, abstract = {

Amateur (or {\textquotedblleft}ham{\textquotedblright}) radio operators are individuals with a non-pecuniary interest in radio technology, engineering, communications, science, and public service. They are licensed by their national governments to transmit on\ amateur radio frequencies. In many jurisdictions, there is no age requirement for a ham radio license, and operators from diverse backgrounds participate. There are more than 740,000 hams in the US, and over 3 million (estimated)\ worldwide. Many amateur communications are conducted using transionospheric links and thus affected by space weather and ionospheric processes. Recent technological advances have enabled the development of\ automated ham radio observation networks (e.g. the Reverse Beacon Network,\ www.reversebeacon.net) and specialized operating modes for the study of weak-signal propagation. The data from these networks have been\ shown to be useful for the study of ionospheric processes. In order to connect professional researchers with the volunteer-based ham radio community, HamSCI (Ham Radio Science Citizen Investigation,\ www.hamsci.org) has\ been established. HamSCI is a platform for publicizing and promoting projects that are consistent with the following objectives: (1) Advance scientific research and understanding through amateur radio activities. (2) Encourage\ the development of new technologies to support this research. (3) Provide educational opportunities for the amateur community and the general public. HamSCI researchers are working with the American Radio Relay League\ (ARRL,\ www.arrl.org) to publicize these objectives and recruit interested hams. The ARRL is the US national organization for amateur radio with a membership of over 170,000 and a monthly magazine, QST. HamSCI is\ currently preparing to support ionospheric research connected to the 21 Aug 2017 Total Solar Eclipse by expanding coverage of the Reverse Beacon Network and organizing a large-scale ham radio operating event ({\textquotedblleft}QSO\ Party{\textquotedblright}) to generate data during the eclipse.

}, url = {http://hamsci.org/sites/default/files/publications/2016_AGU_Frissell_HamSCI.pdf}, author = {Nathaniel A. Frissell and Magdalina L. Moses and Gregory Earle and Robert W. McGwier and Ethan S. Miller and Steven R. Kaeppler and H. Ward Silver and Felipe Ceglia and David Pascoe and Nicholas Sinanis and Peter Smith and Richard Williams and Alex Shovkoplyas and Andrew J. Gerrard} } @conference {52, title = {Experiment Design to Assess Ionospheric Perturbations During the 2017 Total Solar Eclipse}, booktitle = {Fall AGU - Poster Presentation}, year = {2015}, month = {12/2015}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco, CA}, abstract = {

On August 21, 2017, there will be a total solar eclipse over the United States traveling from Oregon to South Carolina. Solar eclipses offer a way to study the dependence of the ionospheric density and morphology on incident solar radiation. There are significant differences between the conditions during a solar eclipse and the conditions normally experienced at sunset and sunrise, including the east-west motion of the eclipse terminator, the speed of the transition, and the continued visibility of the corona throughout the eclipse interval. Taken together, these factors imply that unique ionospheric responses may be witnessed during eclipses. These include changes in the ionospheric electric fields, changes in the Total Electron Content (TEC) along paths through the eclipsed region, and variations in the density and altitude of the F2 peak. Several studies over the past century investigated these effects; however, some of the results from these studies are contradictory. These contradictions and the studies{\textquoteright} limited spatial resolution leave many fundamental questions unanswered. The advent of several mid-latitude Global Positioning System (GPS) and radar networks in the past few decades, such as the Continuously Operating Reference Station (CORS) system and the Super Dual Auroral Radar Network (SuperDARN) radar system, have enabled ionospheric observations with hitherto unprecedented spatial resolution. Also, the establishment of several nationwide amateur radio reporting systems, such as the Reverse Beacon Network (RBN) that monitors radio wave propagation on the high frequency (HF) bands, offers the potential for evaluating changes in ionospheric conditions with unprecedented spatial resolution. We propose to study the effects of the total solar eclipse on the ionosphere using a combination of GPS receivers, the SuperDARN radar system, HF band amateur radio, and plasma modeling. The overall objectives of this study are to characterize the changes in F-region plasma morphology during the eclipse over a larger spatial domain than any previous eclipse experiment. In addition, the amateur radio component of our study offers a unique opportunity to further engage the amateur radio community nationwide in a scientific study.

}, author = {Magdalina Moses and Gregory Earle and Nathaniel Frissell and Stephen Kaeppler} }