@proceedings {826, title = {Analysis of changes to propagation and refraction height on specific paths induced by the 14 October 2023 eclipse}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Signal and noise levels, alongside precise frequency and frequency spread measurements were collected by over 20 WsprDaemon stations prior to, during, and after the October 2023 eclipse using FST4W digital mode. By combining fortuitous home locations with eclipse-specific portable operations, augmented with multiband transmitters at selected sites, the group has gathered a rich data set over 3.5 MHz to 28 MHz. Path geometry includes along- and across-eclipse, from 10s km to over 5000 km. Different geometries, path lengths and frequencies have enabled quantitative analysis of eclipse-induced propagation changes. Reduced D region absorption resulted in 7-9 dB increase in propagated-in noise on 7 MHz at KPH/KFS. The triangular form of the noise anomaly contrasted with a flat-topped +13-15 dB signal level anomaly on 3.57 MHz on a 466 km path. Reduced F2 layer critical frequency (foF2) resulted in several phenomena on 14 MHz identified via frequency spread changes. Two-hop propagation reverted to one-hop on an 1808 km path. On a 1055 km path one-hop changed to an above-the-basic MUF mode - two-hop sidescatter - with signal levels 30 dB lower. Reduced foF2 affected two-hop along-eclipse paths of 4400 km to 5000 km from Costa Rica to Nevada and California on 28 MHz. At ca. 4400 km signals were lost twice, as the second hop, then the first, were affected, with recovery between. Signals at 5000 km were not completely lost. Simple ray-trace modelling to match the observations suggested effective sunspot number (SSNe) had dropped from 125 to ~70. As stations were GPS-disciplined or GPS-aided precise Doppler shift measurements at two-minute intervals with 0.1 Hz resolution were obtained. On a 545 km path Doppler shift at 3.57 MHz, 7 MHz and 10.14 MHz were converted to path velocities and, integrated back and forward in time from a single F2 layer height from the Pt. Arguello ionosonde, gave a credible diurnal profile of refraction height. Compared to 15th October the 14th showed a triangular-shaped height anomaly with a maximum of +33 km. These and other results illustrate the effectiveness of path-specific analysis of FST4W data for eclipse studies.

}, author = {Gwyn Griffiths} } @proceedings {858, title = {Analysis of the HamSCI Solar Eclipse High Frequency Time Difference of Arrival Experiment Observations Using Automated Techniques}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

The objective of our research is to analyze the effects of a solar eclipse on High Frequency (HF) radio by extracting the time difference of arrival (TDOA) due to multiple ionospheric paths of ~3 kHz bandwidth chirp signals sent and received with unmodified commercial off-the-shelf (COTS) single sideband (SSB) amateur radio transceivers. We use programming techniques learned in the Digital Signal Processing course at The University of Scranton in the Python language to automate this process. On the day of the 14 October 2023 eclipse in Texas, WA5FRF transmitted a series of chirps every 15 minutes to receiving stations N5DUP and AB5YO on 5.3 MHz and 7.2 MHz. Received signals were digitized, then squared and low-pass filtered to detect the waveform envelope. Correlation with a matched signal is then used to identify the start time of each chirp, after which a Fast Fourier Transform (FFT) is used to identify the beat-frequency (and TDOA value) generated by the multipath propagation. This TDOA value is then used to compute an ionospheric reflection height. On the WA5FRF-N5DUP path, this analysis shows that the F region reflection point raised from 262.5 km at 17:00 UTC to 300 km at eclipse maximum at 17:30 UTC and then returned to approximately 280 km at 18:00 UTC. This result is in good agreement with the hmF2 observations of the Austin ionosonde.

}, author = {Alexandros Papadopoulos and Gerrard Piccini and Thomas Pisano and Nicholas Guerra and Matthew Felicia and Evan Hromisin and Aidan Montare and Kristina Collins and Paul Bilberry and Samuel Blackshear and Steve Cerwin and Nathaniel A. Frissell} } @proceedings {820, title = {Citizen Science: Development of a Low-Cost Magnetometer System for a Coordinated Space Weather Monitoring}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

As part of Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project, a low-cost, commercial off-the-shelf magnetometer has been developed to provide quantitative and qualitative measurements of the geospace environment from the ground for both scientific and operational purposes at a cost that will allow for crowd-sourced data contributions. The PSWS magnetometers employ a magneto-inductive sensor technology to record three-axis magnetic field variations with a field resolution of ~3 nT at a 1 Hz sample rate. Crowd-sourced data from the PSWS systems will be collected into a central archive for the purpose of public access and analyzation along with space weather research. Ultimately, data from the PSWS network will combine the magnetometer measurements with high frequency (HF, 3-30 MHz) radio observations to monitor large scale current systems and ionospheric disturbances and events due to drivers from space and the atmosphere alike. A densely-spaced magnetometer array, once established, will demonstrate their space weather monitoring capability to an unprecedented spatial extent. Magnetic field data obtained by the magnetometers installed at various locations in the US are presented and compared with the existing magnetometers nearby, demonstrating that the performance is entirely satisfactory for scientific investigations.

}, author = {Joseph Visone and Hyomin Kim and David Witten and Julius Madey and Nathaniel A. Frissell and John Gibbons and William D. Engelke and Anderson Liddle and Nicholas Muscolino and Zhaoshu Cao} } @proceedings {835, title = {Comparative Analysis of Medium Scale Travelling Ionospheric Disturbances: Grape PSWS vs. SuperDARN }, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are periodic fluctuations in ionospheric electron density associated with atmospheric gravity waves. They are characterized by wavelengths of 50-500 kilometers and periods of 15-60 minutes. This study presents initial findings from a comparative analysis of MSTID observations sourced from two distinct systems: the Super Dual Auroral Radar Network (SuperDARN) and the Grape Personal Space Weather Station (PSWS). The Grape PSWS, developed by the Ham Radio Science Citizen Investigation (HamSCI), is a small ground-based remote sensing device aimed at monitoring space weather parameters, including MSTIDs. It achieves this by monitoring a 10 MHz transmission from WWV, a National Institute of Standards and Technology (NIST) time standard station located near Fort Collins, Colorado, USA. In contrast, SuperDARN comprises a global network of high-frequency radars that offer extensive coverage of ionospheric plasma motion. This comparative investigation focuses on aligning MSTID observations obtained from Grape PSWS data with SuperDARN radar data. By investigating datasets from both platforms, these findings serve as initial results for an ongoing investigation of MSTIDs, laying the groundwork for a comprehensive understanding of their dynamics and impacts on ionospheric variability and space weather.

}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Bharat Kunduri and J. Michael Ruohoniemi and Joseph Baker and William Liles and John Gibbons and Kristina Collins and David Kazdan and Rachel Boedicker} } @proceedings {864, title = {Design and 3D Printing of the Grape 2 Enclosure}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

This poster presents the design of the 3D printed enclosure for the Grape 2 Personal Space Weather Station HF Doppler Receiver.

}, author = {Majid Mokhtari and John Gibbons and Nathaniel A. Frissell} } @proceedings {865, title = {Development of Back-End Software for the Grape 2}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

This poster showcases several software tools developed to support the development and operation of the main Grape 2 system. G2console is a terminal-based interface that communicates with the data collection system, providing users with valuable information such as software versions, amplitude, frequency, GPS, and magnetometer metrics for viewing and diagnostics. GrapeSpectrogram is a data processing script that generates Dopplergrams, aiding developers in validating the system{\textquoteright}s operation. Additionally, we will discuss future project developments, such as integration with the Linux GPS background service (gpsd) to provide accurate timing to the Raspberry Pi, and DigitalRF as a more efficient method of data storage.

}, author = {Cuong Nguyen and William Blackwell and John Gibbons and Nathaniel Frissell} } @proceedings {823, title = {Exploring Ionospheric Variability Through Doppler Residuals: A Study Utilizing the HamSCI Grape V1 Receiver}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

This study leverages the capabilities of the Grape V1 low-IF receiver to analyze both long and short-term patterns of high frequency (HF; 3-30 MHz) skywave signals. The HF spectrum, often used for global long-range communications, also spans the frequencies used for remote sensing of the near-Earth plasma environment. The Grape receiver (callsign K2MFF) used in this study is located at the New Jersey Institute of Technology (NJIT) in Newark, NJ. At a rate of 1 Hz, it samples its link to the WWV broadcasting station transmitting at 10 MHz from Fort Collins, CO. The Doppler shift in this radio link, caused by its interactions with the ionosphere, is measured to study fluctuations in the ionosphere{\textquoteright}s electron density. This methodology provides insight into the effects of geomagnetic activity on the terrestrial ionosphere, caused by complex processes in the coupled Sun-Earth plasma environment. Our results show that the signal received during the daytime is less prone to Doppler shift than when received during the nighttime. This night-day contrast is consistent across most 24-hour cycles, barring dates of antenna maintenance or severe geomagnetic storms. We also found a strong correlation between daytime measurements and Cauchy statistics, and between nighttime measurements and a mixture of exponential power / lognormal statistics, wherein day and night at the geographic midpoint between WWV and NJIT are considered. The identification of these differing statistical regimes per time of day has led us to characterize long-term trends in the dataset by the medians of day and night Doppler measurements, independently. Additionally, the receiver{\textquoteright}s sensitivity and versatility was affirmed through case-studies of atypical Doppler traces captured in the data stream, by identifying characteristic markers of solar flares and solar eclipses.

}, author = {Sabastian Fernandes and Gareth W. Perry and Tiago Trigo and John Gibbons} } @proceedings {834, title = {Extreme Values in Short-Term 20 m Sequential Matched WSPR Observations}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Automated amateur radio networks, such as WSPRnet, daily compile data on hundreds of millions of radio contacts. This wealth of information is valuable for researchers exploring and forecasting High-Frequency (HF) propagation and its correlation with solar phenomena. A prerequisite for meaningful investigations is a comprehensive understanding and documentation of the inherent variability present in the data. Prior investigations highlighted the extreme short-term variability in SNR reports from 20-meter sequential matched observations, variability in excess of usual distributional assumptions.\  Here, we describe and model those extreme observations.\  Using descriptive statistics and logistic regressions, we provide evidence of some temporal and spatial patterns associated with the extreme SNR values and develop predictions for their occurrence.

}, author = {Robert B. Gerzoff and Nathaniel A. Frissell} } @proceedings {817, title = {Grape 2 - The Finalized Version}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

A review of the architecture and operation of the final version of the Grape 2 Receiver.

}, author = {John Gibbons} } @proceedings {866, title = {The Grape III: Pondering new varietals for the RF vineyard}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Grape I is a straightforward low-IF receiver based on the venerable NE612 Gilbert cell chip. Grape II is a much more involved 3-frequency, computer-controlled receiver. Grape III will be--what?\  The CWRU Grape team will discuss possibilities for the next generation of inexpensive, high-accuracy receivers that will provide HamSCI, NIST, Canadian Research Council, and others a continuous data stream.\  Anticipation of signal processing, ease of manufacture, and ease of deployment will be among the top issues.\  Several receiver architectures and data collection modalities will be considered along with candidate signal analysis approaches and related chipsets.\  Notes will be taken from audience questions and suggestions, and new design teams will be solicited for the project.

}, author = {David Kazdan and John Gibbons} } @proceedings {862, title = {Incorporating HamSCI Project into a College Physics Course}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

We report citizen science activity in a physics course to engage undergraduate students in a HamSCI Personal Space Weather Station (PSWS) project. The New Jersey Institute of Technology (NJIT) Physics Department has been offering a senior-level lab course, "Advanced Physics Lab" in which the students are expected to gain experience with experimental techniques, instrumentation, theoretical and applied electronics, solid state electronic devices, experiments in modern physics by performing quantitative measurements of fundamental physical parameters. Students perform lab experiments in a mostly unstructured setting, in which students are given the equipment and related manuals and perform experiments with very minimal instructor{\textquoteright}s supervision. Historically, the students have been given a pre-set lab equipment by following the manuals accompanied by the equipment. While this may be suitable for providing an opportunity for the students to relate the results in the lab with the known physics theories/principles, the impact to the students is limited as there is still insufficient "hands-on" components and demonstration of real-world applications. The HamSCI PSWS project is a good example in which students build and test science instruments and use them for scientific investigations to address this issue. We present undergraduate class activity and evaluate their impact on future workforce training utilizing the HamSCI resources.\ 

}, author = {Hyomin Kim and Lindsay Goodwin and Gareth Perry and Nathaniel A. Frissell and Gary Mikitin} } @proceedings {824, title = {Initial Review of the October 2023 Grape Eclipse Data}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

The Great Radio Amateur Propagation Experiment (GRAPE) is a network of Doppler receivers that function as a distributed multi-static radar. The Grape network received 10 MHz doppler data from the NIST time and frequency station WWV in Fort Collins, CO during the 2023 October annular eclipse. Grape receivers in the network recorded a spectrum of Doppler shift data of the signals after they passed through the eclipse modified ionosphere. An updated version of the receiver will\  be deployed to expand the network and collect similar data during the 2024 April total solar eclipse. We present initial data and results of the 2023 eclipse and discuss the upcoming eclipse.

}, author = {Rachel Boedicker and Nathaniel A. Frissell and John Gibbons and Kristina Collins} } @proceedings {825, title = {Ions and Beacons and Flares: Examining HF Propagation Along the 8 April 2024 Total Solar Eclipse Path}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

The 8 April 2024 North American total solar eclipse will track approximately along the great circle path from central Mexico through Austin, Texas to Toronto, Ontario. That great circle continues to Ottawa, Ontario, home of Canadian National Research Council beacon station CHU.\  Our research group has distributed shortwave radios and purpose-built data collection systems to ten school radio clubs along that path and for a rhumb line to New Brunswick.\  The volunteers will measure received CHU signal amplitude and time-of-flight, and upload data to our repository. We have also provided instructions on measurement and data upload for volunteers wishing to use their own radios. That group is split into those who will use computerized monitoring and those preferring to listen to their radios and manually record signal enhancements and attenuations.\  This talk will present the science questions that drive the data collection plans; the equipment{\textquoteright}s design and the logistics of its distribution; the real-time data display for all the receivers along the path; and the planned data analysis to support the science plan.

The work is supported in part by a grant from ARDC and by Case School of Engineering deans{\textquoteright} funds.

}, author = {David Kazdan and Adam Goodman and Laura Schwartz and Maris Usis} } @proceedings {830, title = {Operating GBO{\textquoteright}s 20m Radio Telescope with Ham Radio Students}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

As a part of the 40-week Exploring the Electromagnetic Spectrum - Ham Radio program with the National Radio Astronomy Observatory, students gain technical knowledge of the EMS and experience with hands-on applications through Amateur (Ham) Radio. One of the topics covered in this program is radio astronomy, and students had the opportunity to visit the affiliated Green Bank Observatory (GBO). Students learned how to operate the GBO 20-meter radio telescope in Green Bank, West Virginia using the Skynet Robotic Telescope Network. Students were trained to remotely operate the radio telescope, where they learned the parameters used for different types of observations and how to read the observational data acquired. In this presentation, we discuss the process by which students learned the parameters to operate the 20-meter telescope by observing and completing a comparative analysis of known pulsars.

}, author = {Mia Bridges and Alia Wofford and Erin McDonald and Xander Whittington-Speck and Danielle Rowland and Brenne Gregory and Daniel E. Reichart and Joshua B. Haislip and Vladimir V. Kouprianov and Steve White and Frank Ghigo} } @proceedings {829, title = {Plans to Observe Changes to the Ionosphere During the April 8 Eclipse Using Doppler Shifts of AM Broadcast Stations}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Variations in the ionosphere can be tracked by observing the Doppler-shifted carriers of clear-channel AM broadcast stations.\  An expansive system of receivers using Software-Defined Radios, frequency stabilized by GPS is being deployed to collect data in the eastern United States.\  This network is expected to be able to detect and track changes due to the shadow of the April 8, 2024 Total Eclipse of the Sun.

}, author = {David McGaw and James LaBelle and John Griffin and Terrence Kovacs and Margaret Klein and Jack Bonneau and Justin Lewis and Jackson Gosler} } @proceedings {836, title = {Possible Drivers of Large Scale Traveling Ionospheric Disturbances by Analysis of Aggregated Ham Radio Contacts}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Large Scale Traveling Ionospheric Disturbances (LSTIDs) are quasiperiodic electron density perturbations of the F region ionosphere that have periods of 30 min to over 180 min, wavelengths of over 1000 km, and velocities of 150 to 1000 m/s. These are seen as long slow oscillations in the bottom side of the ionosphere in data from ham radio contacts at 20 meters wavelength on roughly a third of the days in a year. They might be triggered by electromagnetic forces from above, and/or by mechanical pressures from below. The explosion of the Tonga volcano on January 15, 2022 revealed that such a LSTID could be triggered by a violent updraft from the Earth{\textquoteright}s surface into the stratosphere and then detected in the ionosphere over the United States nine hours later. We consider other possible drivers such as the auroral electrojet, the polar vortex, thunderstorms, zonal wind speeds, gravity wave variances, and their time derivatives in 2017.

}, author = {Diego Sanchez and Mary Lou West and Nathaniel A. Frissell and Gareth W. Perry and William D. Engelke and Robert B. Gerzoff and Philip J. Erickson and J. Michael Ruohoniemi and Joseph B. H. Baker and V. Lynn Harvey} } @proceedings {868, title = {Ray-trace modelling of diurnal variation in two-hop sidescatter propagation}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Two-hop sidescatter, an off-great circle propagation mode enabling above-the-basic-MUF communications, is identified by low SNR and high spectral spread (width between -3 dB points). Observable at 7 MHz and above, as a daytime mode it enables propagation from 10s km to 100s km. Additionally, it may appear before, and or after, great-circle one-hop propagation as it operates with a lower F2 layer critical frequency. We have devised a computationally efficient modelling approach for two-hop sidescatter using 3D ray tracing. First, ray landing spots from a transmitter are found over 360{\textdegree}\ azimuth and a sensible range of elevations. Second, the process is repeated for a transmitter at the receiver. The key assumption is that reciprocity holds sufficiently to avoid the computationally demanding need to place a transmitter at every transmitter ray landing spot. A scattering metric, the product of the number of landing spots from transmitter and pseudo-transmitter in a 1{\textdegree}x1{\textdegree}\ area, is a useful approximation to the location and strength of the sidescatter. The off-great circle scattering location from the model has been verified by a rotating-antenna experiment at 14 MHz on paths from Northern California to Utah and Oregon using FST4W digital mode. The diurnal variations of sidescatter location and strength are particularly interesting for a meridional transmitter and receiver geometry: morning (local time) scatter from the east, from land on the California to Oregon path, with afternoon through nighttime scatter from the west, from the ocean. We discuss a qualitative comparison of hourly model simulations with signal level and circuit reliability data from FST4W spots. The nighttime minimum in both parameters is pronounced in the observations and model. An afternoon dip in circuit reliability, without reduction in signal level, is tentatively explained by the model showing strongest scatter alternating between east and west before settling to the west. We postulate that severe multipath scatter from both east and west, land and ocean, sufficiently increased frequency spread to reduce probability of decode for the ~6 Hz bandwidth FST4W mode. This study illustrates the usefulness of combining 3D ray tracing with purposeful observations to explain an underappreciated propagation mode.

}, author = {Gwyn Griffiths and Devin Diehl and R. Lynn Rhymes and Frederick Wahl} } @proceedings {876, title = {Reworking the MUSIC Algorithm to Mitigate MSTID Direction Estimation Bias Associated with SuperDARN Radar Field-of-View Geometry}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are variations in the F region ionospheric electron density. MSTIDs can be associated with atmospheric gravity waves (AGWs) and provide critical information for understanding the ionosphere, which is an electrically charged region of the atmosphere. Previous SuperDARN studies of MSTIDs have used the Multiple Signal Classification (MUSIC) algorithm to determine the size, speed, and direction of these disturbances in the ionosphere. Upon analyzing MSTID MUSIC results from ten North American SuperDARN radars over a period of twelve winter seasons (2010-2022), we found a bias in the SuperDARN MSTID MUSIC direction estimation algorithm that preferentially reports waves as traveling along the boresight direction of the radars. We demonstrate that this bias is caused by the radar Field-of-View geometry and report on the progress algorithm development for removing this bias.

}, author = {Michael Molzen and Thomas Pisano and Nicholas Guerra and Juan Serna and Nathaniel A. Frissell} } @proceedings {871, title = {Signatures of Space Weather in the NJIT V1 Grape Low-IF Receiver}, year = {2024}, month = {03/2024}, abstract = {

The V1 Grape Low Intermediate Frequency (Low-IF; 10 MHz) Receiver is part of a low-cost Personal Space Weather Station (PSWS) developed by the Ham Radio Science Citizen Investigation (HamSCI) Collective. One of the existing deployed Grapes is located at the New Jersey Institute of Technology (NJIT). The Grape measures the WWV 10 MHz signal originating from Fort Collins, Colorado. Variations in WWV{\textquoteright}s signal intensity and frequency, received by the Grape can be used to investigate\  strong space weather events and their effects on the Earth{\textquoteright}s ionosphere. The Grape data is separated into two parameters, Doppler Shift (Hz) which is a change in frequency introduced by the variability of the ionosphere along the WWV to NJIT link, and Relative Power (dB) which can be used as a proxy for the received signal{\textquoteright}s intensity.\  In this presentation, we will explore the possibility of using the Relative Power parameter for studying ionospheric scintillation due to space weather events.\  We will present several examples of data collected on days with known space weather events to assess the Grape{\textquoteright}s ability to detect the event. We will also discuss our analysis techniques, including our strategies to mitigate the local noise environment at NJIT, and future work.

}, author = {Tiago Trigo and Gareth W. Perry and Sebastian Fernandes and John Gibbons and Nathaniel A. Frissell} } @proceedings {872, title = {Statistical Study of the Magnetospheric Open-Closed Boundary (OCB) using ULF Wave Observations from Antarctic Ground Magnetometers As Compared to the Tsyganenko Model}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

We present a statistical study using ground magnetometer data which are located over extensive latitudes from subauroral to the deep polar cap region. These include the Antarctic Automated Geophysical Observatories (AGOs), McMurdo Station (MCM), and South Pole Station (SPA), to characterize open-closed boundary (OCB) behavior during geomagnetically quiet times. Knowledge of the location and dynamics of the magnetic field line OCB provides insight to space physics processes such as substorms, particle precipitation events, and magnetospheric configuration. Prior studies have shown that determination of the OCB location can be made by examining the ULF wave power in data from a latitudinal chain of ground-based magnetometers extending from the auroral zone into the deep polar cap.

}, author = {Rachel M. Frissell and Hyomin Kim and Andrew Gerrard and Nathaniel A. Frissell} } @proceedings {850, title = {Trial of applying PHaRLAP raytracing to reproduce Ham spot data}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

HamSCI is one of the NASA{\textquoteright}s official citizen science projects. HamSCI\ spots database, which is from Reverse Beacon Network (RBN) and Weak Signal Propagation Reporter Network (WSPRNet), is of interest. Information of date, time, frequency, latitude, and longitude of transmitter and receiver are used. PHaRLAP is a raytracing tool that can trace the HF radio wave in 2D and 3D. We use the IRI model to generate the required ionospheric information. We employ the PHaRLAP\ to reproduce the ham spots database by launching the HF radio wave from the transmitter, of which its location is obtained from the HamSCI\ spots database. Then, we trace the O-mode propagation of the wave. The wave arrival latitude and longitude are then mapped into a grid based on the Amateur Radio Maidenhead Grid. Finally, we compare the raytracing-based arrival grid with the HamSCI\ arrival grid. The results, under the assumption of 1-hop propagation, show that the PHaRLAP\ raytracing can reproduce the HamSCI\ spots database well.

}, author = {Kornyanat Hozumi and Nathaniel A. Frissell and Min-Yang Chou and Gwyn Griffiths and William D. Engelke and Jia Yue and Shing Fung and Masha Kuznetsova} } @proceedings {875, title = {Wave Activity in Thermospheric Vertical Winds and Temperatures at Subauroral Latitudes}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

The need for high precision measurements of vertical winds with uncertainties less than 3-5 m/s and a temporal cadence of 1-2 min has made it exceedingly difficult to study the response of the thermosphere to gravity wave activity.\  Herein we present subauroral, midlatitude thermospheric wave measurements of 630 nm OI emission from a 15 cm narrow field Fabry Perot Interferometer, named the Hot Oxygen Doppler Imager (HODI).\  These measurements of temperature and vertical wind velocities are from a first light campaign at Jenny Jump Observatory (40.9 N, 74.9 W) located in northwestern New Jersey. The heightened sensitivity of HODI enables analysis of gravity wave behavior with uncertainties of 3-5 m/s for vertical wind speeds and 10-15 K for temperatures for two-minute exposures. Data was collected during periods of geomagnetically quiet and active conditions, and apparent wave structures were seen during both conditions.\  One detailed observation, taken the night of July 25, 2022, enabled the ~90-deg phase shift between vertical winds and temperatures to be inferred, as per standard gravity wave polarization relations with viscous dissipation.\  However, most other observations found to have little correlation between the temperature and vertical winds, which we speculate may be a result of the propagation and interaction of multiple wave events. Traveling ionospheric disturbances (TIDs) are often described as the ionospheric signature of the passage of gravity waves, and we provide comparisons of select wave events to medium scale TIDs using differential total electron count (TEC) maps.

}, author = {Anneliese Schmidt and John W. Meriwether and Matthew B. Cooper and Andrew J. Gerrard and Lindsay V. Goodwin and Shun-Rong Zhang and Gilbert Jeffer and Chris Callie} } @proceedings {725, title = {Amateur Radio Through the Ages (Exhibit)}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

Amateur Radio Through the Ages Exhibit is an exhibit of historical amateur radios, QSL cards, QST magazines, and radio accessories on display at the University of Scranton Loyola Science Center / Hope Horn Gallery during the Spring 2023 semester. This exhibit is presented by the Murgas Amateur Radio Club K3YTL, The University of Scranton Amateur Radio Club W3USR, and The University of Scranton Department of Physics and Engineering, especially Tom Mayka W3TRM, Bill Gallagher WA3RA, Herb Krumich K2LNS, Ian Kellman K3IK, Phil Galasso K2PG, Elaine Kollar K3VQR, Dave Kirby N3SRO, Dr. Darlene Miller-Lanning, and Dr. Nathaniel Frissell W2NAF.

}, url = {https://photos.app.goo.gl/68gA9i32piVyM9C59}, author = {Tom Mayka and William Gallagher and Herb Krumich and Ian Kelleman and Phil Galasso and Elaine Kollar and Dave Kirby and Darlene Miller-Lanning and Nathaniel A. Frissell} } @proceedings {691, title = {Climatology of Ionospheric Variability with MSTID Periods Observed Using Grape v1 HF Doppler Receivers}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, author = {Veronica Romanek and Nathaniel Frissell and Kristina Collins and John Gibbons and David Kazdan and William Liles} } @proceedings {734, title = {Climatology of Large Scale Traveling Ionospheric Disturbances Observed with Amateur Radio Networks}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

A new climatology of Large Scale Traveling Ionospheric Disturbances (LSTIDs) has been observed from ham radio data in 2017. LSTIDs are quasiperiodic electron density perturbations of the F region ionosphere. LSTIDs have periods of 30 min to over 180 min, wavelengths of over 1000 km, and velocities of over 1400 km/hr. In this paper, we show a climatology of observed LSTID events using data from the Reverse Beacon Network (RBN), Weak Signal Propagation Network (WSPRNet), and PSKReporter amateur radio networks. This climatology was performed twice and was cross examined between two members of the research team. Results show that most of the observed LSTIDs occurred during the winter months with a decline towards the summer, with the exception of a spike in June. This paper provides additional insight into the seasonal trends of LSTIDs and provides additional knowledge that will help in the pursuit of what is causing this phenomenon.

}, author = {Diego Sanchez and Mary Lou West and Bob Gerzoff and Gareth W. Perry and Nathaniel A. Frissell and William D. Engelke and Philip J. Erickson} } @article {797, title = {Crowdsourced Doppler measurements of time standard stations demonstrating ionospheric variability}, journal = {Earth System Science Data}, volume = {15}, year = {2023}, month = {Jan-01-2023}, pages = {1403 - 1418}, abstract = {

Ionospheric variability produces measurable effects in Doppler shift of HF (high-frequency, 3{\textendash}30 MHz) skywave signals. These effects are straightforward to measure with low-cost equipment and are conducive to citizen science campaigns. The low-cost Personal Space Weather Station (PSWS) network is a modular network of community-maintained, open-source receivers, which measure Doppler shift in the precise carrier signals of time standard stations. The primary goal of this paper is to explain the types of measurements this instrument can make and some of its use cases, demonstrating its role as the building block for a large-scale ionospheric and HF propagation measurement network which complements existing professional networks. Here, data from the PSWS network are presented for a period of time spanning late 2019 to early 2022. Software tools for the visualization and analysis of this living dataset are also discussed and provided. These tools are robust to data interruptions and to the addition, removal or modification of stations, allowing both short- and long-term visualization at higher density and faster cadence than other methods. These data may be used to supplement observations made with other geospace instruments in event-based analyses, e.g., traveling ionospheric disturbances and solar flares, and to assess the accuracy of the bottomside estimates of ionospheric models by comparing the oblique paths obtained by ionospheric ray tracers with those obtained by these receivers. The data are archived at\ https://doi.org/10.5281/zenodo.6622111(Collins,\ 2022).

}, doi = {10.5194/essd-15-1403-2023}, url = {https://essd.copernicus.org/articles/15/1403/2023/https://essd.copernicus.org/articles/15/1403/2023/essd-15-1403-2023.pdf}, author = {Collins, Kristina and Gibbons, John and Frissell, Nathaniel and Montare, Aidan and Kazdan, David and Kalmbach, Darren and Swartz, David and Benedict, Robert and Romanek, Veronica and Boedicker, Rachel and Liles, William and Engelke, William and McGaw, David G. and Farmer, James and Mikitin, Gary and Hobart, Joseph and Kavanagh, George and Chakraborty, Shibaji} } @proceedings {719, title = {An Expanded System to Track Traveling Ionospheric Disturbances and Other Effects Using Doppler-shifts of AM Broadcast Stations}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

Traveling Ionospheric Disturbances, propagating variations in the ionosphere, can be tracked by observing the Doppler-shifted carriers of clear-channel AM broadcast stations.\  A system of receivers using Software-Defined Radios frequency stabilized by GPS has been developed, deployed and collecting data in the northeast United States.\  The existing system of 6 receivers will be built out to as many as 15 to cover much of the eastern US.\  This expanded network promises to be able to detect and track these TIDs as well as terminator, Spread-F and eclipse effects.

}, author = {David McGaw and Jackson Gosler and Justin Lewis and James LaBelle} } @proceedings {689, title = {Grape Version 2 Hardware Description and Build Status}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

A description of the Grape Version 2 high frequency (HF) Doppler receiver hardware and build status.

}, author = {John Gibbons} } @article {801, title = {Heliophysics and amateur radio: citizen science collaborations for atmospheric, ionospheric, and space physics research and operations}, journal = {Frontiers in Astronomy and Space Sciences}, volume = {10}, year = {2023}, month = {Apr-11-2024}, abstract = {

The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024{\textendash}2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities.

}, doi = {10.3389/fspas.2023.1184171}, url = {https://www.frontiersin.org/articles/10.3389/fspas.2023.1184171/fullhttps://www.frontiersin.org/articles/10.3389/fspas.2023.1184171/full}, author = {Frissell, Nathaniel A. and Ackermann, John R. and Alexander, Jesse N. and Benedict, Robert L. and Blackwell, William C. and Boedicker, Rachel K. and Cerwin, Stephen A. and Collins, Kristina V. and Cowling, Scott H. and Deacon, Chris and Diehl, Devin M. and Di Mare, Francesca and Duffy, Timothy J. and Edson, Laura Brandt and Engelke, William D. and Farmer, James O. and Frissell, Rachel M. and Gerzoff, Robert B. and Gibbons, John and Griffiths, Gwyn and Holm, Sverre and Howell, Frank M. and Kaeppler, Stephen R. and Kavanagh, George and Kazdan, David and Kim, Hyomin and Larsen, David R. and Ledvina, Vincent E. and Liles, William and Lo, Sam and Lombardi, Michael A. and MacDonald, Elizabeth A. and Madey, Julius and McDermott, Thomas C. and McGaw, David G. and McGwier, Robert W. and Mikitin, Gary A. and Miller, Ethan S. and Mitchell, Cathryn and Montare, Aidan and Nguyen, Cuong D. and Nordberg, Peter N. and Perry, Gareth W. and Piccini, Gerard N. and Pozerski, Stanley W. and Reif, Robert H. and Rizzo, Jonathan D. and Robinett, Robert S. and Romanek, Veronica I. and Sami, Simal and Sanchez, Diego F. and Sarwar, Muhammad Shaaf and Schwartz, Jay A. and Serra, H. Lawrence and Silver, H. Ward and Skov, Tamitha Mulligan and Swartz, David A. and Themens, David R. and Tholley, Francis H. and West, Mary Lou and Wilcox, Ronald C. and Witten, David and Witvliet, Ben A. and Yadav, Nisha} } @proceedings {748, title = {How Do I Talk From Scranton to Pakistan Using​ High Frequency Amateur Radio?​}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

This poster will demonstrate the possible ways to send propagation transmissions from The University of Scranton to Karachi, Pakistan. To do this, VOACAP will be used to map out possible paths and peak times for transmission and then WSRP.rocks will be used to compare the empirical VOACAP model outputs to observed data. A recommendation will then be made for the optimal time and frequency to communicate using high frequency (HF) radio between Scranton, PA and Karachi, Pakistan.

}, author = {Zainab Shah and Gwyn Griffiths and Rob Robinett and Nathaniel Frissell} } @proceedings {697, title = {Identifying 14 MHz Propagation Modes Using FST4W SNR and Spectral Spread}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

The FST4W protocol within the WSJT-X family of weak signal communications programs has an advantage over the widely used WSPR protocol in that it estimates spectral spreading. With modern equipment of modest cost, readily available to the radio amateur, spectral spread at the transmitter and receiver can be less than 30 mHz. This is much lower than spectral spread imposed on signals by ionospheric refraction or ground or sea scatter. Simple two-dimensional scatter plots of spectral spread and signal to noise ratio, alongside time series plots, show clear clustering attributable to different propagation modes. Using a single FST4W transmitter in Northern California and reports from eleven receivers from 2.4 km to over 3000 km to the west, north and east spectral spreading/signal to noise ratio clusters for surface wave and ionospheric 1F and 2F paths were easily identifiable. Other clusters were not so obvious. In particular, the prevalence of 2F ground side-scatter, or skew off great circle propagation, also termed {\textquoteright}above the basic maximum usable frequency{\textquoteright} propagation, at ranges of 40 to 1000 km was unexpected. This mode was also seen after dusk at more distant receivers, following on from 1F propagation as the maximum usable frequency fell. This mode was easily tracked across different receivers by its high spectral spread, 500 mHz to 650 mHz, some eight times that of 1F propagation. Instances of {\textquoteright}above the basic maximum usable frequency{\textquoteright} nighttime propagation due to, we hypothesize, refraction from patches in the ionosphere with much higher electron density than the background plasma were identified by their low spectral spreading at 1000 km and 1525 km. Identifying the particular propagation mode over a path may be of interest to the radio amateur, for example, if the current mode is 2F ground side-scatter, antenna headings along the great circle path may not give best results. Propagation mode identification using FST4W could be a radio amateur contribution to the ionospheric science programs of the 2023 and 2024 Festivals of Eclipse Science, charting changes in propagation modes as changes in solar flux affected ionospheric dynamics and structure.

}, author = {Gwyn Griffiths} } @proceedings {732, title = {Lecher Lines and Transmission Line Stubs: Circuits 101 Says This is Impossible}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

Feel the phenomenon of an electromagnetic standing wave, the same phenomenon\ used in microwave\ ovens to heat food,\ without burning your eyes out. Lumped-parameter circuit theory need not be applied.

}, author = {Adam Goodman} } @proceedings {694, title = {Measuring Daily Ionospheric Variability and the 2023 and 2024 Solar Eclipse Ionospheric Impacts Using HamSCI HF Doppler Shift Receivers}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

This project will study ionospheric variability across the continental United States (CONUS) generated by dawn/dusk transitions and two solar eclipses occurring in 2023 and 2024. Dawn and dusk produce a complex response in observed ionospheric variability that is still not completely understood. A network of Global Navigation Satellite System (GNSS) stabilized/synchronized high frequency (HF) receivers known as Grapes will be used for the study. Thirty Grape receivers will be deployed throughout North America to optimize the study of the ionospheric impacts simultaneously received from two locations. Additional stations will be funded by the HamSCI amateur radio community. This project will generate observations to answer the scientific questions: (1) How do dawn and dusk ionospheric variability vary with local time, season, latitude, longitude, frequency, distance, and direction from the transmitter? (2) Is eclipse ionospheric response symmetric with regard to the onset and recovery timing? (3) How similar is the eclipse to the daily dawn and dusk terminator passage? (4) Would multipath HF mode-splitting in the post-eclipse interval be similar to dawn events? (5) Would the response be different for two eclipses?

This project is part of the Ham Radio Science Citizen Investigation (HamSCI) program and will be open to volunteers who want to field instruments and contribute to scientific analysis and discussion. This project will also establish a new network of DASI instruments that, due to its low cost and operation by volunteers, has the potential to provide measurements for years to come. This project will support students (undergraduate, MS and Ph.D.).

}, author = {Rachel Boedicker and Nathaniel Frissell and Kristina Collins and John Gibbons and David Kazdan and Philip J. Erickson} } @proceedings {764, title = {Medium Scale Traveling Ionospheric Disturbances and their Connection to the Lower and Middle Atmosphere}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, author = {Nathaniel A. Frissell and Francis Tholley and V. Lynn Harvey and Sophie R. Phillips and Katrina Bossert and Sevag Derghazarian and Larisa Goncharenko and Richard Collins and Mary Lou West and Diego F. Sanchez and Gareth W. Perry and Robert B. Gerzoff and Philip J. Erickson and William D. Engelke and Nicholas Callahan and Lucas Underbakke and Travis Atkison and J. Michael Ruohoniemi and Joseph B. H. Baker} } @proceedings {752, title = {A Review of "Climatology of Medium Scale Traveling Ionospheric Disturbances Observed by the Midlatitude Blackstone SuperDARN Radar"}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

This poster is a review of Frissell et al. (2014) by undergraduate students for the purpose of learning about SuperDARN and MSTIDs as part of a
research project to study the differences between MSTIDs observed in the Northern and Southern Hemispheres.

Frissell, N. A., Baker, J. B. H., Ruohoniemi, J. M., Gerrard, A. J., Miller, E. S., Marini, J. P., West, M. L., and Bristow, W. A. (2014), Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar, J. Geophys. Res. Space Physics, 119, 7679{\textendash} 7697, doi:10.1002/2014JA019870.

}, author = {Nicholas Guerra and Michael Molzen and James Fox and Juan Serna and Nathaniel A. Frissell} } @proceedings {726, title = {Statistical and Case Studies of Open Closed Boundaries (OCB) using ULF Wave Observations from Antarctic AGOs, McMurdo Station, and South Pole Station}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

We present a statistical study using ground magnetometer data from the Antarctic Automated Geophysical Observatories (AGOs) to characterize open- closed boundary (OCB) behavior during geomagnetically quiet times. Knowledge of the location and dynamics of the magnetic field line OCB provides insight to space physics processes such as sub storms, particle precipitation events, and magnetospheric configuration. Prior studies have shown that determination of the OCB location can be made by examining the ULF wave power in data from a latitudinal chain of ground-based magnetometers extending from the auroral zone into the deep polar cap. In this statistical study, AGOs 1, 2, 3, and 5, along with McMurdo (MCM) and South Pole Station (SPA) were studied. The seasons chosen were centered around the four cardinal dates, March 20th, June 21st, September 22nd, and December 21st. For each season, 60 days were selected centered around the cardinal date; any days with a planetary Ap greater than 30 were discarded. Using the H- component fluxgate data from South Pole Station, McMurdo Station and the AGO systems, an average daily residual power spectra was calculated. The spectrograms for SPA, MCM, and AGO show signatures of whether the station is located in an open or closed magnetic region. We will present case studies of individual days and a climatology of ULF activity as a function of season.

}, author = {Rachel M. Frissell and Andrew J. Gerrard and Hyomin Kim and Nathaniel A. Frissell} } @article {667, title = {Amateur Radio: An Integral Tool for Atmospheric, Ionospheric, and Space Physics Research and Operations}, journal = {White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033}, year = {2022}, doi = {10.3847/25c2cfeb.18632d86}, author = {Nathaniel A. Frissell and Laura Brandt and Stephen A. Cerwin and Kristina V. Collins and David Kazdan and John Gibbons and William D. Engelke and Rachel M. Frissell and Robert B. Gerzoff and Stephen R. Kaeppler and Vincent Ledvina and William Liles and Michael Lombardi and Elizabeth MacDonald and Francesca Di Mare and Ethan S. Miller and Gareth W. Perry and Jonathan D. Rizzo and Diego F. Sanchez and H. Lawrence Serra and H. Ward Silver and David R. Themens and Mary Lou West} } @proceedings {606, title = {Contrasting effects of the 3-5 November 2021 geomagnetic storm on reception in Colorado of WSPR transmissions from North-Eastern North America with those from Australia}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Solar wind particles from three M-class flares hit the Earth{\textquoteright}s magnetic field around 19:30 UTC on 3 November 2021. The planetary geomagnetic disturbance index (Kp) peaked at 7 that evening and the following morning. At the USGS Boulder Geomagnetic Observatory, Colorado the vertical magnetic field anomaly was below -40 nT between 07:38 UTC and 12:56 UTC on 4 November, dipping briefly to -75 nT. These dramatic space weather events are examined using WSPR spots at N6GN, near Fort Collins, Colorado. Between 10:30 UTC and 11:00 UTC the 7 MHz WSPR spot count showed a ~90\% drop compared with previous days at that time interval. Second, the median distance for remaining spots increased to 7089 km from ~2500 km of previous days. Furthermore, the noise level dropped about 4 dB. At that time of day the noise at N6GN{\textquoteright}s remote receiver is limited by propagated-in noise rather than local or receiver noise. Central to the observed spot count decrease and median distance increase was a 98\% reduction in spots received from grid FN, North Eastern North America: down to 5 spots from a typical 245 on other days in the same interval. But what caused that precipitous drop? We look at signal levels of individual transmissions to try and understand whether received signal levels dropped below the noise or whether Doppler flutter spread the signals beyond the bandwidth of the WSPR decoder. We also seek to understand the increase in spots from Australia compared with previous days. During the storm itself, signal levels from Australia were unchanged; it was not until the following day that levels and the number of spots decreased. We caution and investigate that the very narrow band transmissions may not be decoded more due to spectral distortion and spreading rather than the more usual lack of signal to noise ratio. This analysis provides a valuable use case for WSPR transmissions, reporting via wsprnet.org, augmented with noise estimates and on-line access via the WsprDaemon database with quick-look Grafana and animated Octave visualizations.

}, author = {Gwyn Griffiths and Glenn Elmore} } @article {670, title = {Fostering Collaborations with the Amateur Radio Community}, journal = {White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033}, year = {2022}, doi = {10.3847/25c2cfeb.09fe22b4}, author = {Nathaniel A. Frissell and Laura Brandt and Stephen A. Cerwin and Kristina V. Collins and Timothy J. Duffy and David Kazdan and John Gibbons and William D. Engelke and Rachel M. Frissell and Robert B. Gerzoff and Stephen R. Kaeppler and Vincent Ledvina and William Liles and Elizabeth MacDonald and Gareth W. Perry and Jonathan D. Rizzo and Diego F. Sanchez and H. Lawrence Serra and H. Ward Silver and Tamitha Mulligan Skov and Mary Lou West} } @proceedings {652, title = {Geomagnetic Indices and The Ring Current}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Since the Space Age, the study of the near Earth space environment has become of great importance due to the advent of electrical systems, radio communications, and satellites which are directly affected by the state of the space environment around the Earth.\  The study of the {\textquoteleft}weather{\textquoteright} of this space environment comes in many shapes and forms but has mostly centered around the analysis and prediction of disturbances in the environment. These disturbances have been dubbed {\textquoteleft}geomagnetic storms{\textquoteright}, and their effects can range from inconsequential\  to, in the most severe cases, society altering.\  Several features of this space environment create changes at the ground level as they vary which can be measured and assigned values.\  In this poster we focus on three such values: Kp, F10.7, and Sym-H/Dst.\  The Sym-H/Dst index is of particular interest as it relates to one of the more prominent subsystems of the Earth{\textquoteright}s geospace environment, namely the ring current.

}, author = {Matthew Cooper and Andrew Gerrard} } @proceedings {634, title = {Hardware Design of the Grape2 Data Collection Sequencing Engine}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

A review of the design process for the creation of the sequencing logic to drive the data acquisition system on the Grape 2 analog data collection engine.\  Design requirements and trade-offs between different design techniques will be discussed.\  The design process from requirements , flow chart and finally to hardware implementation will be reviewed.\  Final implementation will be demonstrated with the aid of a logic analyzer.

}, author = {John Gibbons} } @proceedings {646, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in a WWV Signal Received with a Network of Low Cost HamSCI Personal Space Weather Stations}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3 30 MHz) refracted radio waves. The authors present an analysis of observations of TIDs made with Ham Radio Science Citizen Investigation ( HamSCI ) Low Cost Personal Space Weather Stations (PSWS) located in Northwestern New Jersey and near Cleveland, Ohio. The TIDs were detected in the Doppler shifted carrier of the received signal from the 10 MHz WWV frequency and time standard station in Fort Collins, CO. Using a lagged cross correlation analysis, we demonstrate a method for determining TID wavelength, direction, and period using the collected WWV HF Doppler shifted data.

}, author = {Veronica Romanek and Nathaniel A. Frissell and William Liles and John Gibbons and Kristina V. Collins} } @proceedings {622, title = {Properties and Drivers of Plasma Irregularities in the High-Latitude Ionosphere Computed using Novel Incoherent Scatter Radar Techniques}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

To provide new insights into the relationship between geomagnetic conditions and plasma irregularity scale-sizes, high-latitude irregularity spectra are computed using novel Incoherent Scatter Radar (ISR) techniques. This new technique leverages: 1) the ability of phased array Advanced Modular ISR (AMISR) technology to collect volumetric measurements of plasma density, 2) the slow F-region cross-field plasma diffusion at scales greater than 10 km, and 3) the high dip angle of geomagnetic field lines at high-latitudes. The resulting irregularity spectra are of a higher spatiotemporal resolution than has been previously possible with ISRs. Spatial structures as small as 20 km are resolved in less than two minutes (depending on the radar mode). In this work, we focus on Resolute Bay ISR observations operating in high-beam modes, such as the imaginglp mode. In addition to having an unprecedented view of the size and occurrence of irregularities as they traverse the polar cap, we find that near magnetic local noon the spectral power shifts to scales greater than 50 km, and from 15 to 5 magnetic local time the spectral power shifts to structures less than 50 km. This either reflects the role of polar cap convection in breaking down structures as they travel from the dayside ionosphere to the nightside, or the role of photoionization "smoothing" the dayside ionosphere. Additionally, during periods of enhanced geomagnetic conditions, such as periods with low AL indices, the spectral power shifts to structures 50 km and larger. This presentation will discuss these findings, as well as show seasonal variations.

}, author = {Lindsay V. Goodwin and Gareth W. Perry} } @conference {609, title = {The Radio JOVE Project 2.0}, booktitle = {HamSCI Workshop 2022}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, organization = {HamSCI}, address = {Huntsville, AL}, abstract = {

Radio JOVE is a well-known public outreach, education, and citizen science project using radio astronomy and a hands-on radio telescope for science inquiry and education. Radio JOVE 2.0 is a new direction using radio spectrographs to provide a path for radio enthusiasts to grow into citizen scientists capable of operating their own radio observatory and providing science-quality data to an archive. Citizen scientists will have opportunities for presenting and publishing scientific papers. Radio JOVE 2.0 uses more capable software defined radios (SDRs) and spectrograph recording software as a low-cost ($300) radio spectrograph that can address more science questions related to heliophysics, planetary and space weather science, and radio wave propagation. Our goals are: (1) Increase participant access and expand an existing radio spectrograph network, (2) Test and develop radio spectrograph hardware and software, (3) Upgrade the science capability of the data archive, and (4) Develop training modules to help a hobbyist become a citizen scientist. We will overview Radio JOVE 2.0 and give a short demonstration of the new radio spectrograph using the SDRplay RSP1A receiver with a dipole antenna and the associated Radio-Sky Spectrograph (RSS) software.

}, author = {C. Higgins and S. Fung and L. Garcia and J. Thieman and J. Sky and D. Typinski and R. Flagg and J. Brown and F. Reyes and J. Gass and L. Dodd and T. Ashcraft and W. Greenman and S. Blair} } @proceedings {616, title = {Short-Term Variability Associated with 20 Meter Sequential Matched WSPR Observations: A Statistical Exploratory Study}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Automated amateur radio networks such as the Reverse Beacon Network and WSPRnet record details about hundreds of millions of radio contact contacts that investigators can use to study and ultimately predict HF propagation and its relationship to solar phenomena. However, before researchers can undertake such investigations, it is crucial to understand and document the variability inherent in the measurements provided by these networks. Here, we investigated the short-term variability associated with the signal-to-noise(SNR) reports from WSPRnet. Specifically, we analyzed 2,286,311 pairs of 20 meter WSPR SNR reports observed between Jan 2017 and July 2021. Each pair consisted of two sequential WSPR observations between the same two stations, i.e., the paired observations were separated by a single WSPR time slot of two minutes.\  To describe the SNR variability, we present the SNR distributional characteristics and use Generalized Linear Models (GLMs) to explore the influence of the time of day, the month of the year, and the azimuth between the stations. The models predicted the absolute SNR difference between the sequential observations. Model errors were adjusted to account for multiple observations of pairs of stations. To account for the non-gaussian data distribution, the GLMs assumed a gamma distribution with a log link. Because this study was exploratory, we included all three covariates as categorical variables rather than imposing a particular model form. The three models reported here consist of a fully specified two-way interaction between two of the three covariates, i.e., both main effects and interaction.\  \ Computing resource limitations limited the complexity of the models investigated. Based upon the predicted model averages, two sequential WSPR reports typically vary by 6 dB. Deviations from this average are apparent by month, hour, and azimuth between the reporting stations, and we show those graphically. Future research should increase the complexity of the models to incorporate other covariates, e.g., distance or latitude, ultimately tying these data to solar and atmospheric phenomena.

}, author = {Robert B. Gerzoff and Nathaniel A. Frissell} } @proceedings {625, title = {Three Time-of-Flight Measurement Projects on a Common Hardware Platform}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Three undergraduate electrical engineering project groups at Case Western Reserve University are investigating distributed ionospheric sounding through time-of-flight measurements.\  All use GPS pulse-per-second signals for precise timing of received signals.\  Two use as their "radar signals of opportunity" LF, MF, and HF beacons from the US Department of Commerce National Institute of Science and Technology installations north of Fort Collins, Colorado and near Kekaha, Hawaii (radio stations WWVB, WWV, and WWVH).\  The third project modernizes the on-off telegraphy variant known as "coherent CW" (CCW). CCW uses amateur radio QSO or beacon transmissions as the measured signals.\  It facilitates Technician-licensee participation in active HF research and in keyboard-to-keyboard digital contacts, within FCC regulations.\  Using computed matched-filter techniques along the lines of FT8, CCW has a nearly optimal information-theoretic data recovery.\  With transmission or lookup of station locations, it can provide automated time of flight measurements while making a contact.\  The three projects use a common hardware platform for receiver or transceiver interfacing, involving synchronized analog data collection and front-end data processing with the Teensy variant of the Arduino platform.\  Teensy was chosen primarily for its sampling and computing speed. WWVB{\textquoteright}s signal can be sampled directly with the Teensy front-end and some data processing can done between sample acquisitions through timer interrupt programming.\  WWV/H second ticks delay measurements use inexpensive shortwave radio audio outputs, sampled and processed by the Teensy.\  The CCW sampling and matched filtering, plus synchronized Morse keying, are similarly done by the Teensy. Data presentation, user interface, and data uploading to repositories are done by minimal general purpose computers such as Raspberry Pi boards.\  We will present the common hardware and interrupt strategies along with a brief overview of the three projects.\  Comments and suggestions will be solicited, and of course participation in the projects is invited.\  The three projects are supported by a generous grant to the Case Amateur Radio Club W8EDU from ARDC.\  CARC is providing oversight of the projects and the projects use the club station as a laboratory facility.

}, author = {David Kazdan and John Gibbons and Kristina Collins and Maxwell Bauer and Evan Bender and Ryan Marks and Michael O{\textquoteright}Brien and Olivia O{\textquoteright}Brien and Gabriel Foss and Mari Pugliese and Alejandra Ramos and Carolina Whitaker} } @conference {581, title = {Construction and Operation of a HamSCI Grape Version 1 Personal Space Weather Station: A Citizen Scientist{\textquoteright}s Perspective}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

Measurement of Doppler shifts of high frequency (HF) radio signals emitted by precision frequency transmitters is a well-established technique for the detection of traveling ionospheric disturbances and other perturbations in the bottomside ionosphere. Because Doppler measurements require minimal instrumentation, this technique naturally lends itself to crowdsourced data collection, and purpose-built instrumentation platforms are desirable in order to maximize consistency and repeatability. However, even the best system only has value if it is used, and a robust and engaged community of citizen scientists is vital to sustaining instrumentation platforms. The Ham Radio Science Citizen Investigation (HamSCI) has developed a prototype, low-cost system for making HF Doppler shift measurements of signals from standards stations such as WWV (Fort Collins, Colorado, USA) and CHU (Ottawa, Ontario, Canada). This system, known as the Personal Space Weather Station Grape Version 1, consists of a low intermediate frequency (IF) mixer board, GPS disciplined oscillator, and Raspberry Pi. In collaboration with funded project scientists and engineers, volunteer HamSCI community members developed instructions for building and operating a Grape Version 1 on the HamSCI website. In this presentation, we explain the process for constructing a Grape Version 1 and discuss the experiences of volunteers who have built and are now operating this system. We also discuss preliminary data from these stations, which show dramatic Doppler shifts during sunrise and sunset and during solar events. Concurrent data from multiple proximal stations show shared features and can be used for validation. These stations constitute the first iteration of the Personal Space Weather Station network.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/845691}, author = {Hobart, Joseph R. and Farmer, James O. and Mikitin, Gary and Waugh, David and Benedict, Robert and Cerwin, Stephen A. and Collins, Kristina V, and Kazdan, David and Gibbons, John and Romanek, Veronica I. and Frissell, Nathaniel A.} } @proceedings {559, title = {HamSCI: Ham Radio Science Citizen Investigation}, year = {2021}, month = {09/2021}, publisher = {International Space Weather Action Team (ISWAT)}, address = {Virtual}, author = {Frissell, Nathaniel A. and Sanchez, Diego and Perry, Gareth W. and Kaeppler, Stephen R. and Joshi, Dev Raj and Engelke, William D. and Thomas, Evan G. and Coster, Anthea J. and Erickson, Philip J. and Ruohoniemi, J. Michael and Baker, Joseph B. H. and Gerzoff, Robert} } @conference {544, title = {HamSCI Personal Space Weather: Architecture and Applications to Radio Astronomy}, booktitle = {Annual (Summer) Eastern Conference}, year = {2021}, month = {07/2021}, publisher = {Society of Amateur Radio Astronomers (SARA)}, organization = {Society of Amateur Radio Astronomers (SARA)}, address = {Virtual}, abstract = {

The Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project is a citizen science initiative to develop a new modular set of ground-based instrumentation for the purpose of studying the structure and dynamics of the terrestrial ionosphere, as well as the larger, coupled geospace system. PSWS system instrumentation includes radio receivers sensitive to frequencies ranging from the very low frequency (VLF) through very high frequency (VHF) bands, a Global Navigation Satellite System (GNSS) receiver to provide Total Electron Content (TEC) measurements and serve as a precision time and frequency reference, and a ground magnetometer sensitive to ionospheric and geospace currents. Although the PSWS is designed primarily for space weather and space science, its modular and open design in both hardware and software allows for a variety of use cases. The core radio instrument of the PSWS, the TangerineSDR, is a wideband, direct sampling 100~kHz to 60~MHz field programmable gate array (FPGA)-based software defined radio (SDR) receiver with direct applicability to radio astronomy. In this paper, we describe the PSWS and TangerineSDR architecture, show examples of how the TangerineSDR could be used to observe Jovian decametric emission, and discuss the applicability of the TangerineSDR to radio astronomy in general.

}, url = {https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference}, author = {Nathaniel A. Frissell and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Typinski and William D. Engelke and David R. Larsen and David G. McGaw and Hyomin Kim and David M. Witten, II and Julius M. Madey and Kristina V. Collins and John C. Gibbons and David Kazdan and Aidan Montare and Dev Raj Joshi and Veronica I. Romanek and Cuong D. Nguyen and Stephen A. Cerwin and William Liles and Jonathan D. Rizzo and Ethan S. Miller and Juha Vierinen and Philip J. Erickson and Mary Lou West} } @conference {540, title = {HamSCI Personal Space Weather Station (PSWS): Architecture and Current Status}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Recent advances in geospace remote sensing have shown that large-scale distributed networks of ground-based sensors pay large dividends by providing a big picture view of phenomena that were previously observed only by point-measurements. While existing instrument networks provide excellent insight into ionospheric and space science, the system remains undersampled and more observations are needed to advance understanding. In an effort to generate these additional measurements, the Ham Radio Science Citizen Investigation (HamSCI, hamsci.org) is working with the Tucson Amateur Packet Radio Corporation (TAPR, tapr.org), an engineering organization comprised of volunteer amateur radio operators and engineers, to develop a network of Personal Space Weather Stations (PSWS). These instruments that will provide scientific-grade observations of signals-of-opportunity across the HF bands from volunteer citizen observers as part of the NSF Distributed Array of Small Instruments (DASI) program. A performance-driven PSWS design (~US$500) will be a modular, multi-instrument device that will consist of a dual-channel phase-locked 0.1-60 MHz software defined radio (SDR) receiver, a ground magnetometer with (~10 nT resolution and 1-sec cadence), and GPS/GNSS receiver to provide precision time stamping and serve as a GPS disciplined oscillator (GPSDO) to provide stability to the SDR receiver. A low-cost PSWS (\< US$100) that measures Doppler shift of HF signals received from standards stations such as WWV (US) and CHU (Canada) and includes a magnetometer is also being developed. HF sounding algorithms making use of signals of opportunity will be developed for the SDR-based PSWS. All measurements will be collected into a central database for coordinated analysis and made available for public access.

}, author = {Nathaniel A. Frissell and Dev Joshi and Veronica I. Romanek and Kristina V. Collins and Aidan Montare and David Kazdan and John Gibbons and William D. Engelke and Travis Atkison and Hyomin Kim and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Witten and Julius Madey and H. Ward Silver and William Liles and Steven Cerwin and Philip J. Erickson and Ethan S. Miller and Juha Vierinen} } @proceedings {571, title = {Low Cost Personal Space Weather Station Quad Receiver Front End Design}, year = {2021}, month = {09/2021}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://youtu.be/MHkz7jNynOg?t=16330}, author = {Gibbons, John} } @conference {585, title = {Observations of Mid-latitude Irregularities Using the Oblique Ionosonde Sounding Mode for the HamSCI Personal Space Weather Station}, booktitle = {American Geophysical Union Fall Meeting}, year = {2021}, month = {12}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

The spread in the echoes of high-frequency (HF, 3-30 MHz) radio waves from the F-region of the ionosphere was one of the earliest indications of plasma density irregularities in the mid-latitude F region ionosphere. Although mid-latitude spread F has been widely studied, the plasma instability mechanisms that create these irregularities are still largely unknown. This phenomenon can cause radio wave scintillation effects that degrade the performance of human-made technologies such as satellite communications and Global Navigation Satellite Systems (GNSS). Understanding these irregularities so that they can be anticipated and mitigated are important aspects of space weather research. The occurrence climatology and variability can also be helpful in validating models of these irregularities. Here, we present signatures of mid-latitude irregularities observed in oblique ionograms received near Scranton, PA transmitted by the Relocatable Over-the-Horizon Radar (ROTHR) in Chesapeake, Virginia. These observations are collected with the GNU Chirpsounder2 software, an open source software package capable of creating ionograms from frequency modulated (FM) chirp ionosondes. This ionospheric sounding mode will be implemented in the currently under-development Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS), a ground-based multi-instrument system designed to remote-sense the ionosphere using signals of opportunity. Using the data from the oblique ionograms, we generate the Range Time Intensity (RTI) plots that show ionospheric dynamics through measured path length variations as a function of time. We also compare the RTI plots with Range-Time-Parameter (RTP) plots from the SuperDARN HF radar in Blackstone, Virginia which commonly observes direct backscatter from decameter-scale irregularities within the region of ionosphere traversed by the ROTHR signal.

}, url = {https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/875589}, author = {Joshi, Dev Raj and Frissell, Nathaniel A. and Sarwar, M. Shaaf and Sami, Simal and Ruohoniemi, J. Michael and Baker, Joseph B. H. and Coster, Anthea J. and Erickson, Philip J. and Liles, William and Vierinen, Juha and Groves, Keith} } @proceedings {487, title = {Plasma Bubble and Blob Events in the F-region Ionosphere}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

The equatorial plasma bubbles (EPBs) and plasma blobs (enhancements) are, in general, the nighttime phenomena of ionospheric plasma irregularities in the F-region ionosphere. This study presents plasma bubble and blob events identified from the SWARM satellite constellation when it flies above the American continent. We have also simultaneously examined the behavior of total electron content (TEC), its depletions, and enhancements in the equatorial/low/mid-latitude F-region ionosphere detected from ground-based Global Positioning System (GPS) receivers in the American sector. The in situ observations of bubble and blob events are concurrently supported by GPS-TEC measurement from the ground. Additionally, the coordinated ground- and satellite-based observations indicate that the ground-based data show the variability of the background ionosphere prior, during, and later than the development time of the EPBs as seen by the SWARM. For this limited analysis, the plasma blob events are mostly seen at/nearby mid-latitude regions. Finally, we discuss the possible mechanism of the generation, evolution, and relationship between EPBs and plasma blobs in the F-region ionosphere.

}, url = {https://hamsci2021-uscranton.ipostersessions.com/?s=51-F0-AC-9D-0C-7E-D9-A3-FC-F1-2E-13-F2-6E-34-90}, author = {Sovit Khadka and Cesar Valladares and Andrew Gerrard} } @proceedings {516, title = {PSWS Grape Hardware: The Second Generation}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

A review of the Grape Version 2 architecture and current progress.

}, author = {John C. Gibbons} } @proceedings {498, title = {PSWS Grape Hardware: Version 1.0 and Pilot Experiments}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

One year into our NSF grant, HamSCI{\textquoteright}s Low-Cost Personal Space Weather Station is undergoing rapid development. Like its namesake, the "Grape" does its best work in bunches, and several early prototypes are already deployed and collecting Doppler data. This talk will present the Grape 1.0 hardware, the data collected by pilot stations, and the lessons this platform has taught us as we move to Grape 2.0.

}, author = {Kristina V. Collins and John Gibbons and David Kazdan} } @proceedings {478, title = {A Survey of HF Doppler TID Signatures Observed Using a Grape in New Jersey}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, url = {https://hamsci2021-uscranton.ipostersessions.com/?s=6A-B6-94-74-A1-46-CF-D2-AC-BA-F3-58-2E-71-17-97}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Joshi and William Liles and Kristina Collins and John Gibbons and David Kazdan} } @proceedings {482, title = {Thunderstorms as Possible HF Radiation Sources of Propagation Teepee Signatures}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

Propagation teepee is a type of HF spectral feature often recorded at 15-30 MHz by a group of citizen scientists whose main interest is in observing radio emissions from Jupiter. The feature is characterized as spectral enhancements with the frequency of enhancement first increasing and then decreasing with time, resulting in a {\textquotedblleft}triangular spectral feature.{\textquotedblright} Its shape is reminiscent of teepee tents (or TPs for short), the moveable dwellings of some groups of native-Americans.\  TPs usually have sharp or well-defined upper frequency limits for both the leading and trailing edges (see figure). While some TPs are observed in isolation, they are often seen in groups, distributed either in time or in apex frequency as a nested group at a particular time. As reported by Fung et al. [2020], most TPs appear to be diffuse even at high time resolution, but a few TPs seen at high time resolution reveal that those TPs consist actually of discrete bursts, strongly suggestive that the band noise could be produced by lightning storms. TP signatures are thus believed to be HF signals produced by remote lightning storms and reflected by the bottom-side ionosphere. By analyzing a few events with TP signatures detected simultaneously by multiple spectrograph stations, we will use a relationship between the TP apex frequency and the distance to its radiation source to identify the lightning storms responsible for the observed TP signatures.\ 

}, url = {https://hamsci2021-uscranton.ipostersessions.com/default.aspx?s=0E-BF-8A-B2-0E-0C-9B-2B-87-78-FC-B8-84-2C-41-FB}, author = {Shing F. Fung and Todd S. Anderson and Thomas Ashcraft and Wes Greenman and David Typinski and James Brown} } @proceedings {462, title = {Toward interpretation of HF propagation data obtained by the HamSCI Community - Ray Tracers and Ionospheric Models}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

Perhaps one of the most pressing questions the Ham Sci community needs to address is how data obtained by the tangerineSDR or other platforms will be interpreted to obtain scientifically useful information.\  One approach is to produce an appropriate forward model describing the ionosphere and use ray tracers to convert that model into observables that are measured using SDRs.\  The purpose of this talk is to discuss these issues in general terms, but also to discuss simulation strategies that could be useful for the data collected by a network of radio amateurs.\  I will also present on the development of an open source python-based 3-D Jones Stephenson Ray tracer and other developments out of my laboratory that are relevant to ray tracing, including implementation using cuda and the development of point-to-point ray tracing.

}, author = {Stephen R. Kaeppler and Scott Driggers and Andrew Wetzel and Alexander Murtha and Tedi Godfrey} } @proceedings {473, title = {Visualising propagation to mid-latitudes from a shipboard WSPR transmitter on a passage from 27oN to 70oS using the WsprDaemon database, and how to access the data}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

WSPR transmitters and or receivers on polar research ships provide opportunities for several interesting propagation studies. Such studies include propagation across the Boreal and Austral Auroral Ovals with the ship working in the Polar Regions, or, as in this case, on mid-latitude propagation with the ship on transit. For RV Polarstern{\textquoteright}s voyage from Gran Canaria (27.5oN) to Neumayer III station, Antarctica (70.5oS) from 27 December 2020 {\textendash} 18 January 2021 a WSPR transmitter (DP0POL) operated on all bands 160{\textendash}10 meters. Heatmaps of the number of spots received in Europe and North America each hour, each day, and on each band have been generated from the WSPR data held on the WsprDaemon server. These spot-count heatmaps, proxies for circuit reliability, clearly delineate the diurnal variation in band opening times and how those diurnal variations vary systematically over a 100o span of latitude on the voyage south. However, quantitative assessment of the spot numbers needs care; the number of reporters receiving spots changes with time and distance. Furthermore, there were far fewer distinct reporters for the MF and upper HF bands (11 for 160 m and 14 for 10 m compared with 447 for 40 m and 473 for 20 m). The heatmaps of SNR show several intriguing features, including steps from no decodes to SNRs some 10 dB above the WSPR decoding threshold as bands open and close. A Grafana dashboard is available for all to explore at http://logs1.wsprdaemon.org:3000/d/QGlNSz-Gk_2\  Other ways to obtain WSPR data from the WsprDaemon database are outlined, including using Octave, KNIME, R, Python, PySpark and Clickhouse. A worked example shows how to use Octave to generate a time sequence of great circle maps, as a movie, of where WSPR spots from DP0POL were received on the voyage from 27.5oN to 70.5oS.

}, url = {https://hamsci2021-uscranton.ipostersessions.com/?s=57-BC-D3-11-D9-50-97-40-0D-F8-D2-C5-AA-73-79-6A}, author = {Gwyn Griffiths and Rob Robinett} } @conference {403, title = {Electromechanical ELF Transmitters for Wireless Communications in Conductive Environments (ePoster)}, booktitle = {HamSCI Workshop 2020}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, abstract = {

Since the skin depth in ground or seawater is on the order of meters in the extremely low frequency (ELF) band, RF penetration through solids (e.g., into caves) and through water (e.g., to submarines) becomes feasible. This permits emergency communication for search and rescue missions and communication to submarines deep underwater. However, conventional antennas in this band are either impossibly large or highly inefficient (and thus power-hungry). For example, the U.S. military has in the past used ELF communication to communicate with submarines via Project Sanguine, a set of 76 Hz and 45 Hz transmitters with antennas stretching 14 miles and consuming a combined 2.6 MW during transmission. The FCC only regulates frequency bands between 9 kHz and 275 GHz, in part because electrical antennas are so inefficient below this range. This leaves a conveniently unregulated frequency range below 9 kHz (in the ELF and VLF bands) for unrestricted use. Proposed applications include studies of RF penetration through the ground for the study of the earth{\textquoteright}s crust and the study of the ionosphere. Moreover, unlike regulated ham radio bands, this unregulated frequency space has no restrictions on the use of encryption. Thus, communications systems below 9 kHz could be encrypted by any means desired, making this a highly lucrative application for private communications systems. We have developed a mechanically-based ELF antenna which replaces a conventional electrical antenna with a rotating permanent magnet. This radically different approach to wireless transmitter design allows us to take full advantage of the unique properties of the ELF band. Our design utilizes the high remanent flux density in rare earth magnet materials (e.g., NdFeB) to make ELF transmitters more power-efficient and portable. The current prototype operates at 90-110 Hz and supports data rates up to a few bits/sec; the next design iteration will operate at 300-700 Hz, allowing higher transmit data rates. In this presentation we describe the theory behind mechanically-based transmitters, describe the design of a practical transmitter, and show preliminary experimental results.

}, author = {Jarred Glickstein and Soumyajit Mandal} } @conference {424, title = {HamSCI Distributed Array of Small Instruments Personal Space Weather Station (DASI-PSWS): Architecture and Current Status (Invited)}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2020}, month = {06/2020}, address = {Santa Fe, NM (Virtual)}, abstract = {

Recent advances in geospace remote sensing have shown that large-scale distributed networks of ground-based sensors pay large dividends by providing a big picture view of phenomena that were previously observed only by point-measurements. While existing instrument networks provide excellent insight into ionospheric and space science, the system remains undersampled and more observations are needed to advance understanding. In an effort to generate these additional measurements, the Ham Radio Science Citizen Investigation (HamSCI, hamsci.org) is working with the Tucson Amateur Packet Radio Corporation (TAPR, tapr.org), an engineering organization comprised of volunteer amateur radio operators and engineers, to develop a network of Personal Space Weather Stations (PSWS). These instruments that will provide scientific-grade observations of signals-of-opportunity across the HF bands from volunteer citizen observers as part of the NSF Distributed Array of Small Instruments (DASI) program. A performance-driven PSWS design (~US$500) will be a modular, multi-instrument device that will consist of a dual-channel phase-locked 0.1-60 MHz software defined radio (SDR) receiver, a ground magnetometer with (~10 nT resolution and 1-sec cadence), and GPS/GNSS receiver to provide precision time stamping and serve as a GPS disciplined oscillator (GPSDO) to provide stability to the SDR receiver. A low-cost PSWS (\< US$100) that measures Doppler shift of HF signals received from standards stations such as WWV (US) and CHU (Canada) and includes a magnetometer is also being developed. HF sounding algorithms making use of signals of opportunity will be developed for the SDR-based PSWS. All measurements will be collected into a central database for coordinated analysis and made available for public access.

}, url = {http://cedarweb.vsp.ucar.edu/wiki/index.php/2020_Workshop:MainVG}, author = {N. A. Frissell and D. Joshi and K. Collins and A. Montare and D. Kazdan and J. Gibbons and S. Mandal and W. Engelke and T. Atkison and H. Kim and A. J. Gerrard and J. S. Vega and S. H. Cowling and T. C. McDermott and J. Ackermann and D. Witten and H. W. Silver and W. Liles and S. Cerwin and P. J. Erickson and E. S. Miller} } @proceedings {435, title = {LC-PSWS Engineering Status }, year = {2020}, month = {09/2020}, publisher = {ARRL-TAPR}, address = {Virtual}, url = {https://www.youtube.com/watch?v=n9p0FpZkxE4}, author = {Gibbons, John} } @conference {401, title = {Neutral Winds in the Equatorial Thermosphere as Measured With the SOFDI Instrument (ePoster)}, booktitle = {HamSCI Workshop 2020}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, abstract = {

The Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI), a triple-etalon Fabry-Perot interferometer, is designed to measure both nighttime and daytime thermospheric winds from OI 630-nm emission. These continual 24-hour observations of thermospheric winds made with SOFDI under the geomagnetic equator at Huancayo, Peru, during northern summer, provide a unique data set. Results obtained from these data set are compared to the equatorial ionization anomaly (EIA) derived from\ \ total electron content (TEC) and Jicamarca incoherent scatter radar (ISR) measurements of the pre-reversal enhancement (PRE). We investigate the dynamics of the EIA asymmetry in response to measured thermospheric winds. A direct relationship between the afternoon winds and the magnitude of the PRE is also reported. The large variability of winds is observed in the afternoon which is likely caused by synoptic tidal activity modulating gravity waves. Also, a comparison between the measured neutral winds to that obtained from Horizontal Wind Model 14 is demonstrated. These results confirm the role that the thermospheric winds play in modulating equatorial dynamics and further demonstrate the need for both zonal and meridional components of the wind flow.

}, author = {Sovit Khadka and Andrew Gerrard and John Meriwether} } @conference {399, title = {Novel methods for characterizing ionospheric irregularities in the high-latitude ionosphere (ePoster)}, booktitle = {HamSCI Workshop 2020}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, abstract = {

Plasma structuring in the high-latitude ionosphere impacts over-the-horizon radio communication and global navigation systems, and is an important space weather effect. Therefore, characterizing the formation and evolution of these structures is critically important. It is useful to create {\textquoteleft}{\textquoteleft}irregularity spectra", which quantify the sizes of plasma structures in the high-latitude ionosphere.\ \ The shape of the spectra (and other characteristics) can provide insight into the source of the irregularities. From this information it is then possible to forecast the occurrence of irregularities and predict their impact on radio wave propagation and communications. We are able to compute irregularity spectra by leveraging the phased array design of several incoherent scatter radars (ISRs), and using some unique properties of the F-region plasma at high-latitudes.\ \ In this presentation we will describe how we develop and apply a novel technique for ISR measurements to resolve high-latitude ionospheric irregularity spectra at a finer resolution than has been previously possible with ground-based instruments. We will motivate the newly developed ISR technique, describe its methodology, and provide some first results demonstrating its effectiveness. This technique will enable future studies that will directly link high-latitude ionospheric plasma structure drivers to their impact on radio wave communications.

}, author = {Lindsay V. Goodwin and Gareth Perry} } @conference {400, title = {Patterns in Received Noise: Methods, Observations and Questions (ePoster)}, booktitle = {HamSCI Workshop 2020}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, abstract = {

There are valid concerns that local noise, often as common mode, is an increasing problem for radio amateurs. By adding two noise measurement algorithms to a robust Weak Signal Propagation Reporter (WSPR) processing and reporting package\ -\ wsprdaemon\ -\ we now have the capability to record and share noise level measurements from over twenty amateur stations. With locations from Maui to Moscow, and ranging from very quiet rural Northern California, Utah, and Austria to more typical suburban noise environments we have observed a multitude of patterns in received noise on the LF to HF bands (136 kHz to 28 MHz). These patterns show clearly where and when the local noise floor becomes a limiting factor. More intriguingly, we have observed coherent fluctuations in the noise over periods of hours at a pair stations 1000 km apart. Now with observations from a {\textquoteright}diamond{\textquoteright} of four stations we can look in more detail at the timing of these coherent fluctuations. With over six months of observations every two minutes from several stations we can show systematic seasonal variations in the daily noise patterns. We think we understand the root causes of some of the features, such as the local noon minimum and the post-sunset maximum in late spring and summer. However, we have yet to reach a satisfactory understanding for some patterns, including a transition to a daytime noise maximum in autumn. The challenging task of calibration to a field strength in free space will not be ignored, but for this presentation it will be set aside as we concentrate on patterns and not absolute noise levels. This presentation will outline the noise measurement methods, show examples of noise patterns from several stations, introduce the on-line database and its Grafana interface that delegates will be able to explore, and we will seek comments, insights and suggestions as to causes for the patterns and next steps for this collaborative effort.

}, author = {Gwyn Griffiths and Rob Robinett and Glenn Elmore and Clint Turner and Tom Bunch and Dennis Benischek} } @conference {386, title = {Propagation Teepee: A High Frequency (HF) Radio Spectral Feature Identified by Citizen Scientists}, booktitle = {HamSCI Workshop}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, abstract = {

We report on the observations of a high frequency (HF) spectral feature that appears often in ground-based spectral data at 15-30 MHz.The feature, likely of terrestrial origin, is often recorded by a group of amateur radio astronomers, the Spectrograph User Group (SUG), whose main interest is in observing radio emissions from Jupiter. The feature appears as spectral enhancements with the frequency of enhancement first increasing and then decreasing with time, resulting in a {\textquotedblleft}triangular spectral feature.{\textquotedblright} Its shape is reminiscent of teepee tents (or TPs for short), the moveable dwellings of some groups of native-Americans. TPs usually have sharp or well-defined upper frequency limits for both the leading and trailing edges. While some TPs are observed in isolation, they are often seen in groups, distributed either in time or in frequency as a nested group at a particular time. Most TPs appear to be diffuse even at high time resolution, but a few TPs seen at high time resolution reveal that those TPs consist actually of discrete bursts, strongly suggestive that the band noise produced from lightning as possible radiation sources of the TPs. In this paper, we investigate the possible generation of TPs as a result of ionospheric reflection of band noise produced by remote lightning storms.

}, author = {S. F. Fung and D. Typinski and R. F. Flagg and T. Ashcraft and W. Greenman and C. Higgins and J. Brown and L. Dodd and A. S. Mount and F. J. Reyes and J. Sky and J. Thieman and L. N. Garcia} } @conference {388, title = {Statistical Study of Open Closed Boundaries (OCB) using ULF Wave Observations from Antarctic AGOs, McMurdo Station, and South Pole Station}, booktitle = {HamSCI Workshop 2020}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, abstract = {

We present a statistical study using ground magnetometer data from the Antarctic Automated Geophysical Observatories (AGOs) to characterize open-closed boundary (OCB) behavior during geomagnetically quiet times. Knowledge of the location and dynamics of the magnetic field line OCB provides insight to space physics processes such as substorms, particle precipitation events, and magnetospheric configuration. Prior studies have shown that determination of the OCB location can be made by examining the ULF wave power in data from a latitudinal chain of ground based magnetometers extending from the auroral zone into the deep polar cap. In this statistical study, AGOs 1, 2, 3, and 5, along with McMurdo (MCM) and South Pole Station (SPA) were studied. The seasons chosen were centered around the four cardinal dates, March 20th, June 21st, September 22nd, and December 21st. For each season, 60 days were selected centered around the cardinal date; any days with a planetary Ap greater than 30 were discarded. Using the H-component fluxgate data from South Pole Station, McMurdo Station and the AGO systems, an average daily residual power spectra was calculated. The spectrograms for SPA, MCM, and AGO show signatures of whether the station is located in an open or closed magnetic region. This results of the OCB is compared to the Tsyganenko Model. We will discuss the seasonal climatology as calculated from raw data and compared to a model as well as how OCB depends on seasons and magnetic latitude.

}, author = {R. M. Frissell and H. Kim and A. J. Gerrard} } @conference {377, title = {Update on the Low-Cost Personal Space Weather Station}, booktitle = {HamSCI Workshop 2020}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, author = {K. Collins and D. Kazdan and J. Gibbons} } @conference {410, title = {WWV Time Tick Observations: Towards an Automated Approached}, booktitle = {HamSCI Workshop 2020}, year = {2020}, month = {03/2020}, publisher = {HamSCI}, organization = {HamSCI}, address = {Scranton, PA}, abstract = {

As described by\ Cerwin (2020), the timing ticks that mark each second on WWV can be used to observe multipath propagation. We present our setup, which is similar to Cerwin{\textquoteright}s, and describe our work towards automating the collection of timing tick observations. We demonstrate methods of collecting this data by using trace-collection features of certain Rigol oscilloscopes, as well as features of associated computer control software. We also discuss software libraries for a general approach suited to many oscilloscopes, and how these data might be collected by the in-development Personal Space Weather Station. We conclude with a request to the HamSCI community to help develop this technique and broaden its scientific applications.

}, author = {Aidan Montare and John Gibbons} } @conference {274, title = {HamSCI Personal Space Weather Station: A New Tool for Citizen Science Geospace Research}, booktitle = {USNC{\textendash}URSI National Radio Science Meeting}, year = {2019}, month = {01/2019}, publisher = {U.S. National Committee for URSI}, organization = {U.S. National Committee for URSI}, address = {Boulder, CO}, abstract = {

Recent advances in geospace remote sensing have shown that large-scale distributed networks of ground-based sensors pay large dividends by providing a big picture view of phenomena that were previously observed only by point-measurements. Notable examples include the improved understanding of traveling ionospheric disturbance (TID) sources based on observations from the high frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars and GNSS-based total electron content remote sensing networks. While these existing networks provide excellent insight into TID science, the system remains undersampled (especially at HF) and more observations are needed to advance understanding. Additionally, previous measurements have revealed that characteristics of medium scale traveling ionospheric disturbances (MSTIDs) observed on the bottomside ionosphere using oblique HF sounding by SuperDARN differ from integrated ionospheric measurements of MSTIDs made using GNSS-TEC. These differences have yet to be accounted for, and additional observations could aid in understanding the propagation of MSTIDs from the bottom to the top of the ionosphere. In an effort to generate these additional measurements, the Ham Radio Science Citizen Investigation (HamSCI, hamsci.org) is working with the Tucson Amateur Packet Radio Corporation (TAPR, tapr.org), an engineering organization comprising of volunteer amateur radio operators and engineers, to develop a network of Personal Space Weather Stations that will provide scientific-grade observations of signals-of-opportunity across the HF bands from volunteer citizen observers. These measurements will play a key role in the characterization of ionospheric variability across the geographic regions in which these stations are deployed. We will describe concepts, key software patterns for radio science, and proposed timelines for the Personal Space Weather Station project. A particular focus will be assembling the proper metadata for science grade observations, and strategies for lightweight calibration of radio sensors. Initial project efforts concentrate on a wideband receiving station and backing software data distribution system.

}, url = {https://nrsmboulder.org/}, author = {J. S. Vega and N. A. Frissell and P. J. Erickson and A. J. Gerrard} } @article {275, title = {High Frequency Communications Response to Solar Activity in September 2017 as Observed by Amateur Radio Networks}, journal = {Space Weather}, year = {2019}, month = {2019/01/11}, abstract = {

Abstract Numerous solar flares and coronal mass ejection (CME) induced interplanetary shocks associated with solar active region AR12673 caused disturbances to terrestrial high frequency (HF, 3--30 MHz) radio communications from 4-14 September 2017. Simultaneously, Hurricanes Irma and Jose caused significant damage to the Caribbean Islands and parts of Florida. The coincidental timing of both the space weather activity and hurricanes was unfortunate, as HF radio was needed for emergency communications. This paper presents the response of HF amateur radio propagation as observed by the Reverse Beacon Network (RBN) and the Weak Signal Propagation Reporting Network (WSPRNet) to the space weather events of that period. Distributed data coverage from these dense sources provided a unique mix of global and regional coverage of ionospheric response and recovery that revealed several features of storm-time HF propagation dynamics. X-class flares on 6, 7, and 10 September caused acute radio blackouts during the day in the Caribbean with recovery times of tens of minutes to hours, based on the decay time of the flare. A severe geomagnetic storm withKpmax\ =\ 8\ +\ and?SYM\ ?\ Hmin\ =\ \ ?\ 146?nT occurring 7-10 September wiped out ionospheric communications first on 14 MHz and then on 7 MHz starting at~1200 UT 8 September. This storm, combined with affects from additional flare and geomagnetic activity, contributed to a significant suppression of effective HF propagation bands both globally and in the Caribbean for a period of 12 to 15 days.

}, keywords = {Amateur Radio, Geomagnetic Storm, Ham Radio, HF Radio Propagation, Radio Blackout, Solar Flare}, issn = {1542-7390}, doi = {10.1029/2018SW002008}, url = {https://doi.org/10.1029/2018SW002008}, author = {Frissell, Nathaniel A. and Vega, Joshua S. and Markowitz, Evan and Gerrard, Andrew J. and Engelke, William D. and Erickson, Philip J. and Miller, Ethan S. and Luetzelschwab, R. Carl and Bortnik, Jacob} } @conference {295, title = {High Frequency Communications Response to Solar Activity in September 2017 as Observed by Amateur Radio Networks}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

Numerous solar flares and coronal mass ejection-induced interplanetary shocks associated with solar active region AR12673 caused disturbances to terrestrial high-frequency (HF, 3{\textendash}30 MHz) radio communications from 4{\textendash}14 September 2017. Simultaneously, Hurricanes Irma and Jose caused significant damage to the Caribbean Islands and parts of Florida. The coincidental timing of both the space weather activity and hurricanes was unfortunate, as HF radio was needed for emergency communications. This paper presents the response of HF amateur radio propagation as observed by the Reverse Beacon Network and the Weak Signal Propagation Reporting Network to the space weather events of that period. Distributed data coverage from these dense sources provided a unique mix of global and regional coverage of ionospheric response and recovery that revealed several features of storm time HF propagation dynamics. X-class flares on 6, 7, and 10 September caused acute radio blackouts during the day in the Caribbean with recovery times of tens of minutes to hours, based on the decay time of the flare. A severe geomagnetic storm with Kpmax = 8+ and SYM-Hmin = -146 nT occurring 7{\textendash}10 September wiped out ionospheric communications first on 14 MHz and then on 7 MHz starting at \~{}1200 UT 8 September. This storm, combined with affects from additional flare and geomagnetic activity, contributed to a significant suppression of effective HF propagation bands both globally and in the Caribbean for a period of 12 to 15 days.

}, author = {Nathaniel A. Frissell and Joshua S. Vega and Evan Markowitz and Andrew J. Gerrard and William D. Engelke and Philip J. Erickson and Ethan S. Miller and R. Carl Luetzelschwab and Jacob Bortnik} } @conference {314, title = {History of Case ARC and W8EDU}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, author = {James Galm} } @conference {360, title = {A Low-Cost Citizen Science HF Doppler Receiver for Measuring Ionospheric Variability}, booktitle = {American Geophysical Union Fall Meeting}, year = {2019}, month = {12/2019}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco, CA}, abstract = {

Advancement in understanding short term and small spatial scale ionospheric variability requires global high time and spatial resolution measurements. Professional ionospheric sounding networks are extensive and capable, yet more measurements are still needed due to the strongly magnetized nature and large extent of the ionosphere. High Frequency (HF, 3-30 MHz) radio signals are refracted by the ionosphere, and therefore are modulated by processes such as traveling ionospheric disturbances (TIDs) and geomagnetic storms. By measuring the amplitude and Doppler shift of trans-ionospheric HF signals, it is possible to detect signatures of ionospheric absorption and changes in propagation path length. We present a design for a low-cost citizen science HF multi-band receiver that measures the amplitude and Doppler shift of reference signals of opportunity from the US National Institute of Standards and Technology station WWV and the Canadian Institute for National Measurement Standards station CHU. The receiver will make 1 s cadence measurements on nine HF beacon frequencies and subsequently upload the results to a central server for scientific analysis. The local user will be able to review data daily, both locally and in aggregate on a web server, and participate in discussion of the ionospheric measurements. This receiver forms one component of the low-cost version of the Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS), and is designed with the intention of distribution to hundreds to thousands of citizen science observers. Preliminary results from the prototype receiver will be presented.

}, url = {https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/602677}, author = {Kristina Collins and David Kazdan and John Gibbons and Aidan Montare and Skylar Dannhoff and Philip J. Erickson and Nathaniel A. Frissell} } @conference {325, title = {Sounding the Ionosphere with Signals of Opportunity in the High-Frequency (HF) Band}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

The explosion of commercial off-the-shelf (COTS) education- and consumer-grade hardware supporting software-defined radio (SDR) over the past two decades has revolutionized many aspects of radio science, bringing the cost and calibration of traditionally complex receiver hardware within the grasp of even advanced amateur experimenters. Transmission has now become the limiter of access in many cases, particularly through spectrum management and licensing considerations. Fortunately, several classes of signals endemic to the HF band lend themselves to processing for ionospheric characteristics: time and frequency standard broadcasters, surface-wave oceanographic radars, amateur radio transmissions, and ionospheric sounders.

This presentation is a tour of these signals of opportunity and techniques for collecting and processing them into ionospheric characteristics, with emphasis on distributed receivers collecting on a small number (four or fewer) of coherent channels. Receiving techniques will be discussed for near-vertical ({\textquotedblleft}quasi-vertical{\textquotedblright}) incidence skywave (NVIS or QVI), long-distance oblique soundings, and transionospheric sounding. Soundings will be demonstrated from space-based, ground-based, and maritime platforms.

Binary, Doppler, delay, cone angle of arrival, and polarization observations will be exploited, depending on the signal type and capability of the collector. Each of these techniques conveys different, but not always {\textquotedblleft}orthogonal,{\textquotedblright} information about the ionospheric skywave channel. The information content of each datum will be discussed with respect to the implications for inverting the local or regional ionosphere from the observations. More importantly than inverting the full ionosphere, some of these techniques are sensitive indicators of ionospheric irregularities, structures, and instabilities, that might otherwise be difficult to study due to limited geographic coverage with larger, more exquisite instrumentation.

}, author = {Ethan S. Miller and Gary S. Bust and Gareth W. Perry and Stephen R. Kaeppler and Juha Vierinen and Nathaniel A. Frissell and A. A. Knuth and Philip J. Erickson and Romina Nikoukar and Alexander T. Chartier and P. Santos and C. Brum and J. T. Fentzke and T. R. Hanley and Andrew J. Gerrard} } @conference {305, title = {Space Science for Ham Radio Operators (Invited Tutorial)}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

Despite decades of academic research, space science remains a field full of unanswered questions. Ionospheric research, as a portion of space science, has its fair share of unanswered questions that have important implications for short-wave radio wave propagation. While average behavior of ionosphere is reasonably well understood and is reflected in empirical models, surprisingly large day-to-day variability in ionospheric parameters remains a topic of active research. Ionospheric disturbances can exist on a variety of temporal scales, from several minutes to multi-day, and cover vastly varying geographic regions, from several degrees in latitude/longitude to the entire hemisphere.\  This presentation will discuss several types of ionospheric disturbances related to\  geomagnetic storms, including positive and negative storm effects, SED (Storm Enhanced Density), and LSTIDs (Large-Scale Travelling Ionospheric Disturbances). It will also discuss ionospheric disturbances related to influences from lower atmosphere, including gravity waves and associated MSTIDs (Medium-Scale Travelling ionospheric Disturbances), thunderstorms, tides, and sudden stratospheric warmings. In addition to a variety of natural phenomena, ionospheric electron density and, consequently, radio wave propagation can be affected by human activity, for example by rocket or missile launches. As ionospheric system remains strongly undersampled by traditional observation methods, networks developed by amateur radio operators can provide critical information with a potential to advance physical understanding of near-Earth space environment.

}, author = {Goncharenko, Larisa} } @conference {293, title = {Sudden Ionospheric Disturbances (SIDs) and Personal Space Weather Stations}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

This presentation will deal with Sudden Ionospheric Disturbances (SIDs), what they are, what their effects are, how they can be observed easily at home, and observations combined with others to form a more complete view of the ionosphere. SIDs are disturbances on the Sun but can be observed through monitoring VLF transmitters and noticing the change in propagation. Since the transmitters are usually at 30 kHz and less, they are easily observed using just an antenna, amplifier and a computer sound card with appropriate software. There is a worldwide network of collection sites which feeds data to Stanford University. The equipment is easy to build but can also be procured from the Society of Amateur Radio Astronomers (SARA). Different types of equipment will be discussed and shown, including home built and the SARA kit. The antennas used are mainly simple multi-tun loop antennas. Images of different antennas will be shown and it is planned to show an actual antenna. Data collected from SID systems will be displayed and discussed. The presentation will include how people can get involved with SID monitoring and feeding the collective database at Stanford University.

}, author = {Ethan S. Grace and George Lemaster} } @conference {327, title = {Sudden Ionospheric Disturbances (SIDs) and Personal Space Weather Stations}, booktitle = {Hamvention HamSCI Forum}, year = {2019}, month = {05/2019}, publisher = {Dayton Amateur Radio Association}, organization = {Dayton Amateur Radio Association}, address = {Xenia, OH}, abstract = {

This presentation will deal with Sudden Ionospheric Disturbances (SIDs), what they are, what their effects are, how they can be observed easily at home, and observations combined with others to form a more complete view of the ionosphere. SIDs are disturbances on the Sun but can be observed through monitoring VLF transmitters and noticing the change in propagation. Since the transmitters are usually at 30 kHz and less, they are easily observed using just an antenna, amplifier and a computer sound card with appropriate software. There is a worldwide network of collection sites which feeds data to Stanford University. The equipment is easy to build but can also be procured from the Society of Amateur Radio Astronomers (SARA). Different types of equipment will be discussed and shown, including home built and the SARA kit. The antennas used are mainly simple multi-tun loop antennas. Images of different antennas will be shown and it is planned to show an actual antenna. Data collected from SID systems will be displayed and discussed. The presentation will include how people can get involved with SID monitoring and feeding the collective database at Stanford University.

}, author = {Ethan S. Grace and George Lemaster} } @conference {296, title = {WWV Doppler Shift Observations}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, author = {David Kazdan and Skylar Dannhoff and Aidan Montare and John Gibbons} } @conference {276, title = {High Frequency Communications Response to Solar Activity in September 2017 as Observed by Amateur Radio Networks}, booktitle = {Fall AGU}, year = {2018}, month = {12/2018}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {Washington, DC}, abstract = {

Numerous solar flares and coronal mass ejection (CME) induced interplanetary shocks associated with solar active region AR12673 caused disturbances to terrestrial high frequency (HF, 3{\textendash}30 MHz) radio communications from 4-14 September 2017. Simultaneously, Hurricanes Irma and Jose caused significant damage to the Caribbean Islands and parts of Florida. The coincidental timing of both the space weather activity and hurricanes was unfortunate, as HF radio was needed for emergency communications. This paper presents the response of HF amateur radio propagation as observed by the Reverse Beacon Network (RBN) and the Weak Signal Propagation Reporting Network (WSPRNet) to the space weather events of that period. Distributed data coverage from these dense sources provided a unique mix of global and regional coverage of ionospheric response and recovery that revealed several features of storm-time HF propagation dynamics. X-class flares on 6, 7, and 10 September caused acute radio blackouts during the day in the Caribbean with recovery times of tens of minutes to hours, based on the decay time of the flare. A severe geomagnetic storm withKpmax = 8 + and SYM - Hmin = - 146 nT occurring 7-10 September wiped out ionospheric communications first on 14 MHz and then on 7 MHz starting at\ 1200 UT 8 September. This storm, combined with affects from additional flare and geomagnetic activity, contributed to a significant suppression of effective HF propagation bands both globally and in the Caribbean for a period of 12 to 15 days.

}, keywords = {Amateur Radio, Geomagnetic Storm, Ham Radio, HF Radio Propagation, Radio Blackout, Solar Flare}, url = {https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/419847}, author = {Frissell, Nathaniel A. and Vega, Joshua S. and Markowitz, Evan and Gerrard, Andrew J. and Engelke, William D. and Erickson, Philip J. and Miller, Ethan S. and Luetzelschwab, R. Carl and Bortnik, Jacob} } @conference {236, title = {Initial Results of HamSCI Ham Radio 21 August 2017 Eclipse Ionospheric Experiments}, booktitle = {American Meteorological Society Annual Meeting}, year = {2018}, month = {01/2018}, publisher = {American Meteorological Society}, organization = {American Meteorological Society}, address = {Austin, TX}, abstract = {

On 21 August 2017, a total solar eclipse will cause the shadow of the moon to traverse the United States from Oregon to South Carolina in just over 90 minutes. The sudden absence of sunlight due to the eclipse, especially solar UV and x-rays, provides an impulse function to the upper atmosphere that modifies the neutral dynamics, plasma concentrations, and related properties. Despite more than 60 years of research, questions remain regarding eclipse-induced ionospheric impacts. Ham radio operators{\textquoteright} advanced technical skills and inherent interest in ionospheric science make the amateur radio community ideal for contributing to and and participating in large-scale ionospheric sounding experiments. We present initial results from three amateur radio experiments designed to study the 2017 total solar eclipse: the Solar Eclipse QSO Party (SEQP), the HF Wideband Recording Experiment, and the Eclipse Frequency Measurement Test (FMT). These experiments are coordinated by HamSCI, the Ham Radio Science Citizen Investigation, a citizen science organization that connects the amateur radio community to the professional space science research community for mutual benefit.

}, url = {https://ams.confex.com/ams/98Annual/webprogram/Paper337094.html}, author = {N. A. Frissell and J. R. Ackermann and D. Bern and F. Ceglia and G. D. Earle and P. J. Erickson and A. J. Gerrard and R. Gerzoff and P. Gladstone and S. W. Gunning and J. D. Huba and J. D. Katz and E. S. Miller and M. L. Moses and S. E. Reyer and S. W. Rose and A. Shovkoplyas and H. W. Silver and P. Smith and J. S. Vega and M. L. West and R. Williams} } @article {248, title = {Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse}, journal = {Geophysical Research Letters}, volume = {45}, year = {2018}, month = {05/2018}, type = {Research Letter}, abstract = {

On 21 August 2017, a total solar eclipse traversed the continental United States and caused large-scale changes in ionospheric densities. These were detected as changes in medium and high frequency radio propagation by the Solar Eclipse QSO Party (SEQP) citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse-ionospheric study to make use of measurements from a citizen-operated, global-scale HF propagation network and develop tools for comparison to a physics-based model ionosphere. Eclipse effects were observed {\textpm}0.3 hr on 1.8 MHz, {\textpm}0.75 hr on 3.5 and 7 MHz, and {\textpm}1 hr on 14 MHz and are consistent with eclipse-induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at\ h >= 125 km altitude with elevation angles\ θ >= 22{\textdegree}, while 14 MHz signals refracted at\ h \< 125 km with elevation angles\ θ \< 10{\textdegree}.

}, issn = {1944-8007}, doi = {https://doi.org/10.1029/2018GL077324}, url = {https://doi.org/10.1029/2018GL077324}, author = {N. A. Frissell and J. D. Katz and S. W. Gunning and J. S. Vega and A. J. Gerrard and G. D. Earle and M. L. Moses and M. L. West and J. D. Huba and P. J. Erickson and E. S. Miller and R. B. Gerzoff and W. Liles and H. W. Silver} } @conference {277, title = {Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse}, booktitle = {Fall AGU}, year = {2018}, month = {12/2018}, publisher = {American Geophysical Union Meeting}, organization = {American Geophysical Union Meeting}, address = {Washington, DC}, abstract = {

On 21 August 2017, a total solar eclipse traversed the continental United States and caused large-scale changes in ionospheric densities. These were detected as changes in medium- and high-frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse-ionospheric study to make use of measurements from a citizen-operated, global-scale HF propagation network and develop tools for comparison to a physics-based model ionosphere. Eclipse effects were observed {\textpm}0.3 hr on 1.8 MHz, {\textpm}0.75 hr on 3.5 and 7 MHz, and {\textpm}1 hr on 14 MHz and are consistent with eclipse-induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at h>=125 km altitude with elevation angles θ>=22{\textdegree}, while 14 MHz signals refracted at h \< 125 km with elevation angles θ \< 10{\textdegree}.

}, keywords = {Amateur Radio, Citizen Science, Ham Radio, HF propagation, ionosphere, solar eclipse}, url = {https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/418915}, author = {Frissell, N. A. and Katz, J. D. and Gunning, S. W. and Vega, J. S. and Gerrard, A. J. and Earle, G. D. and Moses, M. L. and West, M. L. and Huba, J. D. and Erickson, P. J. and Miller, E. S. and Gerzoff, R. B. and Liles, W. and Silver, H. W.} } @conference {219, title = {Anthropogenic Space Weather}, booktitle = {HamSCI-UK}, year = {2017}, month = {10/2017}, publisher = {HamSCI-UK}, organization = {HamSCI-UK}, address = {Milton Keynes, UK}, author = {P. J. Erickson and T. I. Gombosi and D. N. Baker and A. Balogh and J. D. Huba and L. J. Lanzerotti and J. C. Foster and J. M. Albert and J. F. Fennell and E. V. Mishin and M. J. Starks and A. N. Jaynes and X. Li and S. G. Kanekal and C. Kletzing} } @conference {235, title = {Effects of the 2017 Solar Eclipse on HF Radio Propagation and the D-Region Ionosphere: Citizen Science Investigation}, booktitle = {American Geophysical Union Fall Meeting}, year = {2017}, month = {12/2017}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, abstract = {

August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center{\textquoteright}s partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. The Amateur Radio community has developed several automated receiving and reporting networks that draw from widely-distributed, automated and manual radio stations to build a near-real time, global picture of changing radio propagation conditions. We used these networks and employed HF radio propagation modeling in our investigation. A Ham Radio Science Citizen Investigation (HamSCI) collaboration with the American Radio Relay League (ARRL) ensured that many thousands of amateur radio operators would be {\textquotedblleft}on the air{\textquotedblright} communicating on eclipse day, promising an extremely large quantity of data would be collected. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon{\textquoteright}s shadow marched across the United States. Our expectations were the D-Region ionosphere would be most impacted by the eclipse, enabling over-the-horizon radio propagation on lower HF frequencies (3.5 and 7 MHz) that are typically closed during the middle of the day. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.

}, author = {C. D. Fry and L. Rawlins and L. H. Krause and R. M. Suggs and J. K. McTernan and M. L. Adams and D. L. Gallagher and S. Anderson and R. Allsbrooks IV} } @conference {176, title = {Fitting Ionospheric Models Using Real-Time HF Amateur Radio Observations}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2017}, month = {06/2017}, address = {Keystone, CO}, author = {J. D. Katz and N. A. Frissell and J. S. Vega and A. J. Gerrard and R. B. Gerzoff and P. J. Erickson and E. S. Miller and M. L. Moses and F. Ceglia and D. Pascoe and N. Sinanis and P. Smith and R. Williams and A. Shovkoplyas} } @conference {175, title = {HamSCI and the 2017 Total Solar Eclipse}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2017}, month = {06/2017}, address = {Keystone, CO}, author = {N. A. Frissell and J. R. Ackermann and G. D. Earle and P. J. Erickson and A. J. Gerrard and R. B. Gerzoff and S. W. Gunning and M. Hirsch and J. D. Katz and S. R. Kaeppller and R. W. McGwier and E. S. Miller and M. L. Moses and G. Perry and S. E. Reyer and A. Shovkoplyas and H. W. Silver and J. S. Vega and RBN Team} } @conference {226, title = {HamSCI and the 2017 Total Solar Eclipse}, booktitle = {2017 Annual Meeting of the APS Mid-Atlantic Section}, year = {2017}, month = {11/2017}, publisher = {American Physical Society}, organization = {American Physical Society}, address = {Newark, NJ}, author = {N. A. Frissell and J. D. Katz and S. W. Gunning and J. S. Vega and M. L. West and G. D. Earle and M. L. Moses and H. W. Silver} } @conference {230, title = {HamSCI and the 2017 Total Solar Eclipse}, booktitle = {American Geophysical Union Fall Meeting}, year = {2017}, month = {12/2017}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, author = {N. A. Frissell and J. D. Katz and S. W. Gunning and J. S. Vega and A. J. Gerrard and M. L. Moses and G. D. Earle and M. L. West and P. J. Erickson and E. S. Miller and R. Gerzoff and H. Ward Silver} } @conference {207, title = {HamSCI and the 2017 Total Solar Eclipse (Experiment Description)}, booktitle = {ARRL and TAPR Digital Communications Conference}, year = {2017}, month = {09/2017}, address = {St. Louis, MO}, abstract = {

On 21 August 2017, a total solar eclipse will cause the shadow of the moon to traverse the United States from Oregon to South Carolina in just over 90 minutes. The sudden absence of sunlight due to the eclipse, especially solar UV and x-rays, provides an impulse function to the upper atmosphere that modifies the neutral dynamics, plasma concentrations, and related properties. In spite of more than 60 years of research, open questions remain regarding eclipse-induced ionospheric impacts. Ham radio operators{\textquoteright} advanced technical skills and inherent interest in ionospheric science make the amateur radio community ideal for contributing to and and participating in large-scale ionospheric sounding experiments. This pa- per describes the Solar Eclipse QSO Party (SEQP), the HF Wideband Recording Experiment, and the Eclipse Frequency Measurement Test (FMT), three amateur radio experiments designed to study the 2017 total solar eclipse. These experi- ments are coordinated by HamSCI, the Ham radio Science Citizen Investigation, a citizen science organization that connects the amateur radio community to the professional space science research community for mutual benefit.

}, url = {https://www.tapr.org/pub_dcc.html}, author = {N. A. Frissell and J. S. Vega and J. D. Katz and S. W. Gunning and A. J. Gerrard and M. L. Moses and G. D. Earle and E. S. Miller and J. D. Huba and M. Hirsch and H. W. Silver and S. E. Reyer and J. R. Ackermann and M. D. Suhar and D. Bern} } @conference {210, title = {HamSCI and the 2017 Total Solar Eclipse (First Results)}, booktitle = {ARRL and TAPR Digital Communications Conference}, year = {2017}, month = {09/2017}, address = {St. Louis, MO}, url = {https://www.tapr.org/pub_dcc.html}, author = {N. A. Frissell and W. Engelke and J. D. Katz and S. W. Gunning and J. S. Vega} } @conference {174, title = {HamSCI: The Ham Radio Science Citizen Investigation (Banquet Presentation)}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2017}, month = {06/2017}, address = {Keystone, CO}, author = {N. A. Frissell and J. R. Ackermann and J. Dzekevich and G. D. Earle and P. J. Erickson and A. J. Gerrard and R. B. Gerzoff and S. W. Gunning and M. Hirsch and J. D. Katz and S. R. Kaeppler and R. W. McGwier and E. S. Miller and M. L. Moses and G. Perry and S. E. Reyer and A. Shovkoplyas and H. W. Silver and J. S. Vega and RBN Team} } @conference {173, title = {Ionospheric Simulations of the 2017 Solar Eclipse QSO Party}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2017}, month = {06/2017}, address = {Keystone, CO}, author = {N. A. Frissell and J. S. Vega and J. D. Katz and M. L. Moses and G. D. Earle and S. W. Gunning and A. J. Gerrard and E. S. Miller and M. L. West and F. Ceglia and D. Pascoe and N. Sinanis and P. Smith and R. Williams and A. Shovkoplyas and H. W. Silver} } @conference {165, title = {The Solar Eclipse QSO Party: Ionospheric Sounding Using Ham Radio QSOs}, booktitle = {Dayton Hamvention}, year = {2017}, address = {Xenia, OH}, abstract = {

The 2017 Total Solar Eclipse is expected to temporarily induce profound changes on ionospheric structure, dynamics, and radio propagation. The ARRL and HamSCI are sponsoring a Solar Eclipse QSO Party (SEQP) that will be used to generate to assist in imaging ionospheric changes before, during, and after the eclipse. Data will be collected through participant submitted logs and the use of automated tools such as the Reverse Beacon Network (RBN), PSKReporter, and WSPRNet. SEQP rules and a prediction of results will be presented.

}, author = {Nathaniel A. Frissell and Joshua D. Katz and Andrew J. Gerrard and Magdalina Moses and Gregory D. Earle and Robert W. McGwier and Ethan S. Miller and Stephen Kaeppler and H. W. Silver} } @conference {143, title = {HamSCI: The Ham Radio Science Citizen Investigation}, booktitle = {Fall 2016 American Geophysical Union}, year = {2016}, month = {12/2016}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco}, abstract = {

Amateur (or {\textquotedblleft}ham{\textquotedblright}) radio operators are individuals with a non-pecuniary interest in radio technology, engineering, communications, science, and public service. They are licensed by their national governments to transmit on\ amateur radio frequencies. In many jurisdictions, there is no age requirement for a ham radio license, and operators from diverse backgrounds participate. There are more than 740,000 hams in the US, and over 3 million (estimated)\ worldwide. Many amateur communications are conducted using transionospheric links and thus affected by space weather and ionospheric processes. Recent technological advances have enabled the development of\ automated ham radio observation networks (e.g. the Reverse Beacon Network,\ www.reversebeacon.net) and specialized operating modes for the study of weak-signal propagation. The data from these networks have been\ shown to be useful for the study of ionospheric processes. In order to connect professional researchers with the volunteer-based ham radio community, HamSCI (Ham Radio Science Citizen Investigation,\ www.hamsci.org) has\ been established. HamSCI is a platform for publicizing and promoting projects that are consistent with the following objectives: (1) Advance scientific research and understanding through amateur radio activities. (2) Encourage\ the development of new technologies to support this research. (3) Provide educational opportunities for the amateur community and the general public. HamSCI researchers are working with the American Radio Relay League\ (ARRL,\ www.arrl.org) to publicize these objectives and recruit interested hams. The ARRL is the US national organization for amateur radio with a membership of over 170,000 and a monthly magazine, QST. HamSCI is\ currently preparing to support ionospheric research connected to the 21 Aug 2017 Total Solar Eclipse by expanding coverage of the Reverse Beacon Network and organizing a large-scale ham radio operating event ({\textquotedblleft}QSO\ Party{\textquotedblright}) to generate data during the eclipse.

}, url = {http://hamsci.org/sites/default/files/publications/2016_AGU_Frissell_HamSCI.pdf}, author = {Nathaniel A. Frissell and Magdalina L. Moses and Gregory Earle and Robert W. McGwier and Ethan S. Miller and Steven R. Kaeppler and H. Ward Silver and Felipe Ceglia and David Pascoe and Nicholas Sinanis and Peter Smith and Richard Williams and Alex Shovkoplyas and Andrew J. Gerrard} }